Advertisement

Stratification and management of patients ineligible for lung cancer screening

  • Author Footnotes
    1 These authors contributed equally to the manuscript.
    Reenika Aggarwal
    Footnotes
    1 These authors contributed equally to the manuscript.
    Affiliations
    Division of Medical Oncology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, M5G 2C1, Canada

    Dalla Lana School of Public Health, University of Toronto, 155 College St, Toronto, M5T 3M7, Canada

    Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, M5S 1A8, Canada
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to the manuscript.
    Andrew CL. Lam
    Footnotes
    1 These authors contributed equally to the manuscript.
    Affiliations
    Division of Medical Oncology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, M5G 2C1, Canada

    Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, M5S 1A8, Canada
    Search for articles by this author
  • Jingyue Huang
    Affiliations
    Department of Biostatistics, Princess Margaret Cancer Centre, 610 University Ave, Toronto, M5G 2C1, Canada
    Search for articles by this author
  • Katrina Hueniken
    Affiliations
    Division of Medical Oncology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, M5G 2C1, Canada
    Search for articles by this author
  • Daniel Nguyen
    Affiliations
    Division of Medical Oncology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, M5G 2C1, Canada
    Search for articles by this author
  • Khaleeq Khan
    Affiliations
    Division of Medical Oncology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, M5G 2C1, Canada
    Search for articles by this author
  • Taariq Shaikh
    Affiliations
    Division of Medical Oncology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, M5G 2C1, Canada
    Search for articles by this author
  • Frances A. Shepherd
    Affiliations
    Division of Medical Oncology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, M5G 2C1, Canada

    Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, M5S 1A8, Canada
    Search for articles by this author
  • Ming-Sound Tsao
    Affiliations
    Department of Pathology, Laboratory Medicine, University Health Network, 585 University Ave, Toronto, M5B 2N2, Canada

    Department of Medical Biophysics, University of Toronto, 101 College St, Toronto, M5G 1L7, Canada
    Search for articles by this author
  • Wei Xu
    Affiliations
    Dalla Lana School of Public Health, University of Toronto, 155 College St, Toronto, M5T 3M7, Canada

    Department of Biostatistics, Princess Margaret Cancer Centre, 610 University Ave, Toronto, M5G 2C1, Canada
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to the manuscript.
    John Kavanagh
    Correspondence
    Corresponding author. Joint Department of Medical Imaging, University Health Network, 263 McCaul St, Toronto, ON, M5T 1W7, Canada.
    Footnotes
    1 These authors contributed equally to the manuscript.
    Affiliations
    Joint Department of Medical Imaging, University Health Network, 263 McCaul St, Toronto, M5T 1W7, Canada
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to the manuscript.
    Geoffrey Liu
    Footnotes
    1 These authors contributed equally to the manuscript.
    Affiliations
    Division of Medical Oncology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, M5G 2C1, Canada

    Dalla Lana School of Public Health, University of Toronto, 155 College St, Toronto, M5T 3M7, Canada

    Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, M5S 1A8, Canada

    Department of Medical Biophysics, University of Toronto, 101 College St, Toronto, M5G 1L7, Canada

    Institute of Medical Science, University of Toronto, 1 King's College Cir, Toronto, M5S 1A8, Canada

    Pharmacology and Toxicology, University of Toronto, 1 King's College Cir, Toronto, M5S 1A8, Canada
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to the manuscript.
Published:September 20, 2021DOI:https://doi.org/10.1016/j.rmed.2021.106610

      Highlights

      • Lung cancer risk increases with time in most patients ineligible for lung screening.
      • Subpopulations of ineligible patients have much faster increase in lung cancer risk.
      • Smoking status and duration, less education, and COPD predict future screening eligibility.
      • Predictive modeling using participants current behaviors can estimate future risk.

      Abstract

      This study identifies participants ineligible for lung cancer screening with the greatest likelihood of future eligibility. Lung cancer risk in participants enrolled in longitudinal lung screening was assessed using the Prostate, Lung, Colorectal and Ovarian lung cancer risk calculator (PLCOm2012) at two timepoints: baseline (T1) and follow-up (T2). Separate analyses were performed on four PLCOm2012 eligibility thresholds (3.25%, 2.00%, 1.50%, and 1.00%); only participants with a T1 risk less than the threshold were included in that analysis. Cox-models identified T1 risk factors associated with screen-eligibility at T2. Three models, applying differing assumptions of participant behavior, predicted future eligibility and were benchmarked against the observed cohort. Nine hundred and fifty-six participants had a T1 risk <3.25%; at 2.00% n= 755; at 1.50% n= 652; at 1.00% n= 484. Lung cancer risk increased over time in most screen-ineligible participants. However, risk increased much faster in participants who became screen-eligible at T2 compared to those who remained screen-ineligible (median per-year increase of 0.35% versus 0.02%, when using a 3.25% threshold). Participants smoking for >30 years, current smokers, less educated participants, and those with chronic obstructive pulmonary disease (COPD) at T1 were significantly more likely to become screen-eligible. New diagnoses of COPD and/or non-lung cancers between T1 and T2 precipitated eligibility in a subset of participants. The prediction model that assumed health behaviors observed at T1 continued to T2 reasonably predicted changes in lung cancer risk. This prediction model and the identified baseline risk factors can identify screen-ineligible participants who should be closely followed for future eligibility.

      Keywords

      Abbreviations:

      NLST (National Lung Screening Trial), NELSON (Dutch-Belgian Lung Cancer Screening Trial), Low-dose Computed Tomography (LDCT), PLCOm2012 (Prostate, Lung, Colorectal and Ovarian Six-year Lung Cancer Risk Calculator), ILST (International Lung Screen Trial), OLSP (Ontario Lung Screening Program), PMLSP (Princess Margaret Lung Screening Program), FHS (Framingham Heart Study)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Respiratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • de Koning H.J.
        • van der Aalst C.
        • de Jong P.
        • Scholten E.
        • Nackaerts K.
        • Heuvelmans M.
        • Lammers J.
        • Weenink C.
        • Yousaf-Khan U.
        • Horeweg N.
        • Westeinde S.
        • Prokop M.
        • Mali W.
        • Mohamed Hoesein F.
        • van Ooijen P.
        • Aerts J.
        • den Bakker M.
        • Thunnissen E.
        • Verschakelen J.
        • Vliegenthart R.
        • Walter J.
        • ten Haaf K.
        • Groen H.
        • Oudkerk M.
        Reduced lung-cancer mortality with volume CT screening in a randomized trial.
        N. Engl. J. Med. 2020; 382: 503-513https://doi.org/10.1056/NEJMoa1911793
        • National Lung Screening Trial Research Team
        • Aberle D.R.
        • Adams A.M.
        • Berg C.D.
        • Black W.C.
        • Clapp J.D.
        • Fagerstrom R.M.
        • Gareen I.F.
        • Gatsonis C.
        • Marcus P.M.
        • Sicks J.D.
        Reduced lung-cancer mortality with low-dose computed tomographic screening.
        N. Engl. J. Med. 2011; 365: 395-409https://doi.org/10.1056/NEJMoa1102873
        • Raymakers A.J.N.
        • Mayo J.
        • Lam S.
        • FitzGerald J.M.
        • Whitehurst D.G.T.
        • Lynd L.D.
        Cost-Effectiveness analyses of lung cancer screening strategies using low-dose computed tomography: a systematic review.
        Appl. Health Econ. Health Pol. 2016; 14: 409-418https://doi.org/10.1007/s40258-016-0226-5
        • Wood D.
        • Kazerooni E.
        • Baum S.
        • Eapen G.
        • Ettinger D.
        • Hou L.
        • Jackman D.
        • Klippenstein D.
        Lung cancer screening, version 3.2018: clinical practice guidelines in Oncology.
        J. Natl. Compr. Canc. Netw. 2018; 16: 412-441https://doi.org/10.1111/mcn.12149
        • National Health Service
        Targeted Screening for Lung Cancer with Low Radiation Dose Computed Tomography.
        2019 (England)
        • Oudkerk M.
        • Devaraj A.
        • Vliegenthart R.
        • Henzler T.
        • Prosch H.
        • Heussel C.P.
        • Bastarrika G.
        • Sverzellati N.
        • Mascalchi M.
        • Delorme S.
        • Baldwin D.R.
        • Callister M.E.
        • Becker N.
        • Heuvelmans M.A.
        • Rzyman W.
        • Infante M.V.
        • Pastorino U.
        • Pedersen J.H.
        • Paci E.
        • Duffy S.W.
        • de Koning H.
        • Field J.K.
        European position statement on lung cancer screening.
        Lancet Oncol. 2017; https://doi.org/10.1016/S1470-2045(17)30861-6
        • Tammemägi M.C.
        • Katki H.A.
        • Hocking W.G.
        • Church T.R.
        • Caporaso N.
        • Kvale P.A.
        • Chaturvedi A.K.
        • Silvestri G.A.
        • Riley T.L.
        • Commins J.
        • Berg C.D.
        Selection criteria for lung-cancer screening.
        N. Engl. J. Med. 2013; https://doi.org/10.1056/NEJMoa1211776
        • ten Haaf K.
        • Jeon J.
        • Tammemägi M.C.
        • Han S.S.
        • Kong C.Y.
        • Plevritis S.K.
        • Feuer E.J.
        • de Koning H.J.
        • Steyerberg E.W.
        • Meza R.
        Risk prediction models for selection of lung cancer screening candidates: a retrospective validation study.
        PLoS Med. 2017; 14: 1-24https://doi.org/10.1371/journal.pmed.1002277
        • Lam S.
        • Myers R.
        • Ruparel M.
        • Atkar-Khattra S.
        • Stone E.
        • Manser R.
        • Mcwilliams A.
        • Fogarty P.
        • Lam D.
        • Yee J.
        • Mayo J.
        • Berg C.
        • Janes S.
        • Fong K.
        • Tammemagi M.
        PL02.02 lung cancer screenee selection by USPSTF versus PLCOM2012 criteria - interim ILST findings.
        in: International Association for the Study of Lung Cancer World Conference on Lung Cancer. 2019 (Barcelona)
        • Krist A.H.
        • Davidson K.W.
        • Mangione C.M.
        • Barry M.J.
        • Cabana M.
        • Caughey A.B.
        • Davis E.M.
        • Donahue K.E.
        • Doubeni C.A.
        • Kubik M.
        • Landefeld C.S.
        • Li L.
        • Ogedegbe G.
        • Owens D.K.
        • Pbert L.
        • Silverstein M.
        • Stevermer J.
        • Tseng C.W.
        • Wong J.B.
        Screening for lung cancer: US preventive services Task Force recommendation statement.
        JAMA, J. Am. Med. Assoc. 2021; 325: 962-970https://doi.org/10.1001/jama.2021.1117
        • Malhotra J.
        • Malvezzi M.
        • Negri E.
        • La Vecchia C.
        • Boffetta P.
        Risk factors for lung cancer worldwide.
        Eur. Respir. J. 2016; 48: 889-902https://doi.org/10.1183/13993003.00359-2016
        • Wender R.
        • Fontham E.T.H.
        • Barrera Jr., E.
        • Colditz G.A.
        • Church T.R.
        • Ettinger D.S.
        • Etzioni R.
        • Flowers C.R.
        • Gazelle G.S.
        • Kelsey D.K.
        • LaMonte S.J.
        • Michaelson J.S.
        • Oeffinger K.C.
        • Shih Y.-C.T.
        • Sullivan D.C.
        • Travis W.
        • Walter L.
        • Wolf A.M.D.
        • Brawley O.W.
        • Smith R.A.
        American Cancer Society lung cancer screening guidelines, CA.
        Cancer J. Clin. 2013; 63: 107-117https://doi.org/10.3322/caac.21172
        • Triplette M.
        • Thayer J.H.
        • Pipavath S.N.
        • Crothers K.
        Poor uptake of lung cancer screening: opportunities for improvement.
        J. Am. Coll. Radiol. 2019; 16: 446-450https://doi.org/10.1016/j.jacr.2018.12.018
        • Roberts H.C.
        • Patsios D.
        • Paul N.S.
        • McGregor M.
        • Weisbrod G.
        • Chung T.
        • Herman S.
        • Boerner S.
        • Waddell T.
        • Keshavjee S.
        • Darling G.
        • Pereira A.
        • Kale A.
        • Bayanati H.
        • Sitartchouk I.
        • Tsao M.
        • Shepherd F.A.
        Lung cancer screening with low-dose computed tomography: Canadian experience.
        Can. Assoc. Radiol. J. 2007; 58: 225-235
        • Aggarwal R.
        • Lam A.
        • McGregor M.
        • Menezes R.
        • Hueniken K.
        • Tateishi H.
        • O'Kane G.
        • Tsao M.
        • Shepherd F.A.
        • Xu W.
        • McInnis M.
        • Schmidt H.
        • Liu G.
        • Kavanagh J.
        Outcomes of long-term interval rescreening with low-dose computed tomography for lung cancer in different risk cohorts.
        J. Thorac. Oncol. 2019; 14: 1003-1011https://doi.org/10.1016/j.jtho.2019.01.031
        • Lam A.C.L.
        • Aggarwal R.
        • Huang J.
        • Varadi R.
        • Davis L.
        • Tsao M.S.
        • Shepherd F.A.
        • Lam S.
        • Kavanagh J.
        • Liu G.
        Point-of-care spirometry identifies high-risk individuals excluded from lung cancer screening.
        Am. J. Respir. Crit. Care Med. 2020; 202: 1473-1477https://doi.org/10.1164/rccm.202005-1742LE
        • Tammemagi M.C.
        Improving implementation of lung cancer screening with risk prediction models.
        Ann. Intern. Med. 2018; 169: 54-55
        • Lim K.P.
        • Marshall H.
        • Tammemagi M.
        • Brims F.
        • McWilliams A.
        • Stone E.
        • Manser R.
        • Canfell K.
        • Weber M.
        • Connelly L.
        • Bowman R.V.
        • Yang I.A.
        • Fogarty P.
        • Mayo J.
        • Yee J.
        • Myers R.
        • Atkar-Khattra S.
        • Lam D.C.
        • Rosell A.
        • Berg C.D.
        • Fong K.M.
        • Lam S.
        Protocol and rationale for the international lung screening trial (ILST).
        Ann. Am. Thorac. Soc. 2020; 17: 503-512https://doi.org/10.1513/AnnalsATS.201902-102OC
        • Ontario C.C.
        Frequently Asked Questions for Healthcare Providers: Lung Cancer Screening in Ontario for People at High Risk.
        2019
        • Weber M.
        • Yap S.
        • Goldsbury D.
        • Manners D.
        • Tammemagi M.
        • Marshall H.
        • Brims F.
        • McWilliams A.
        • Fong K.
        • Kang Y.J.
        • Caruana M.
        • Banks E.
        • Canfell K.
        Identifying high risk individuals for targeted lung cancer screening: independent validation of the PLCOm2012 risk prediction tool.
        Int. J. Canc. 2017; 141: 242-253https://doi.org/10.1002/ijc.30673
        • Landy R.
        • Cheung L.
        • Berg C.D.
        • Chaturvedi A.K.
        • Robbins H.
        • Katki H.
        Contemporary implications of U.S. Preventive services Task Force and risk-based guidelines for lung cancer screening eligibility in the United States.
        Ann. Intern. Med. 2019; 171: 384-386https://doi.org/10.7326/M18-3617
        • Middleton K.
        • Anton S.
        • Perri M.
        Long-Term adherence to health behavior change kathryn.
        Am. J. Lifestyle Med. 2013; 7: 395-404https://doi.org/10.1177/1559827613488867
        • Chaiton M.
        • Diemert L.
        • Cohen J.E.
        • Bondy S.J.
        • Selby P.
        • Philipneri A.
        • Schwartz R.
        Estimating the number of quit attempts it takes to quit smoking successfully in a longitudinal cohort of smokers.
        BMJ Open. 2016; 6: 1-9https://doi.org/10.1136/bmjopen-2016-011045
        • Brain K.
        • Carter B.
        • Lifford K.J.
        • Burke O.
        • Devaraj A.
        • Baldwin D.R.
        • Duffy S.
        • Field J.K.
        Impact of low-dose CT screening on smoking cessation among high-risk participants in the UK Lung Cancer Screening trial.
        Thorax. 2017; 72: 912-918https://doi.org/10.1136/thoraxjnl-2016-209690
        • Evans W.K.
        • Gauvreau C.L.
        • Flanagan W.M.
        • Memon S.
        • Yong J.H.E.
        • Goffin J.R.
        • Fitzgerald N.R.
        • Wolfson M.
        • Miller A.B.
        Clinical impact and cost-effectiveness of integrating smoking cessation into lung cancer screening: a microsimulation model.
        C. Open. 2020; 8: E585-E592https://doi.org/10.9778/cmajo.20190134
        • Team R.C.
        RStudio.
        • Inc S.I.
        SAS.
        2018
        • Tindle H.A.
        • Stevenson Duncan M.
        • Greevy R.A.
        • Vasan R.S.
        • Kundu S.
        • Massion P.P.
        • Freiberg M.S.
        Lifetime smoking history and risk of lung cancer: results from the Framingham Heart study.
        J. Natl. Cancer Inst. 2018; 110: 1201-1207https://doi.org/10.1093/jnci/djy041
        • Jeong Yang J.
        • Song M.
        • Yoon H.S.
        • Lee H.W.
        • Lee Y.
        • Lee S.A.
        • Choi J.Y.
        • Lee J.K.
        • Kang D.
        What are the major determinants in the success of smoking cessation: results from the health examinees study.
        PloS One. 2015; 10e0143303https://doi.org/10.1371/journal.pone.0143303
        • West R.J.
        • Russell M.A.
        Pre-abstinence smoke intake and smoking motivation as predictors of severity of cigarette withdrawal symptoms.
        Psychopharmacology. 1985; 87: 334-336https://doi.org/10.1007/BF00432717
        • Remen T.
        • Pintos J.
        • Abrahamowicz M.
        • Siemiatycki J.
        Risk of lung cancer in relation to various metrics of smoking history: a case-control study in Montreal.
        BMC Canc. 2018; 18: 1275https://doi.org/10.1186/s12885-018-5144-5
        • Flanders W.D.
        • Lally C.A.
        • Zhu B.P.
        • Henley S.J.
        • Thun M.J.
        Lung cancer mortality in relation to age, duration of smoking, and daily cigarette consumption: results from cancer prevention study II.
        Can. Res. 2003; 63: 6556-6562
        • Centers for Medicare & Medicaid Services
        Decision Memo for Screening for Lung Cancer with Low Dose Computed Tomography ( LDCT ).
        CAG-00439N, 2015
        • Cohen D.
        • Clark E.
        • Lawson P.
        • Casucci B.
        • Flocke S.A.
        Identifying teachable moments for health behavior counseling in primary care.
        Patient Educ. Counsel. 2011; 85: 8-15https://doi.org/10.1016/j.pec.2010.11.009.Identifying
        • Hall P.
        • Fong G.
        • Meng G.
        Time perspective as a determinant of smoking cessation in four countries: direct and mediated effects from the International Tobacco Control (ITC) 4-Country Surveys, Addict.
        Beyond Behav. 2014; 39: 1183-1190https://doi.org/10.1016/j.addbeh.2014.03.019
        • Lam A.C.
        • Aggarwal R.
        • Cheung S.
        • Stewart E.
        • Darling G.
        • Lam S.
        • Xu W.
        • Liu G.
        • Kavanagh J.
        Predictors of Participant Nonadherence in Lung Cancer Screening Programs: A Systematic Review and Meta-Analysis.
        Lung Cancer, 2020 (Epub)
        • Iaccarino J.M.
        • Duran C.
        • Slatore C.G.
        • Wiener R.S.
        • Kathuria H.
        Combining smoking cessation interventions with LDCT lung cancer screening: a systematic review.
        Prev. Med. 2019; 121: 24-32
        • Pauwels R.
        • Buist S.
        • Calverley P.
        • Jenkins C.
        • Hurd S.
        Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease. NHBLI/WHO global initiative for chronic obstructive lung disease (GOLD) workshop summary.
        Rev. Port. Pneumol. 2001; 7: 398-400https://doi.org/10.1164/ajrccm.163.5.2101039
        • Katki H.A.
        • Kovalchik S.A.
        • Petito L.C.
        • Cheung L.C.
        • Jacobs E.
        • Jemal A.
        • Berg C.D.
        • Chaturvedi A.K.
        Implications of nine risk prediction models for selecting ever-smokers for computed tomography lung cancer screening, ann.
        Intern. Med. 2018; 169: 10
        • Wood D.E.
        • Kazerooni E.A.
        • Baum S.L.
        • Eapen G.A.
        • Ettinger D.S.
        • Hou L.
        • Jackman D.M.
        • Klippenstein D.
        • Kumar R.
        • Lackner R.P.
        • Leard L.E.
        • Lennes I.T.
        • Leung A.N.C.
        • Makani S.S.
        • Massion P.P.
        • Mazzone P.
        • Merritt R.E.
        • Meyers B.F.
        • Midthun D.E.
        • Pipavath S.
        • Pratt C.
        • Reddy C.
        • Reid M.E.
        • Rotter A.J.
        • Sachs P.B.
        • Schabath M.B.
        • Schiebler M.L.
        • Tong B.C.
        • Travis W.D.
        • Wei B.
        • Yang S.C.
        • Gregory K.M.
        • Hughes M.
        Lung cancer screening, version 3.2018, NCCN clinical practice guidelines in Oncology.
        J. Natl. Compr. Canc. Netw. 2018; 16: 412-441https://doi.org/10.6004/jnccn.2018.0020
        • Cornelius M.E.
        • Wang T.W.
        • Jamal A.
        • Loretan C.G.
        • Neff L.J.
        Tobacco product use among adults — United States, 2019.
        MMWR Morb. Mortal. Wkly. Rep. 2020; 69: 1736-1742https://doi.org/10.15585/mmwr.mm6946a4
        • Chaiton M.
        • Callard C.
        Mind the gap: disparities in cigarette smoking in Canada, tob.
        Use Insights. 2019; 12: 1-8https://doi.org/10.1177/1179173x19839058
        • Patricia Rivera M.
        • Katki H.
        • Tanner N.T.
        • Triplette M.
        • Sakoda L.
        • Wiener R.
        • Cardarelli R.
        • Carter-Harris L.
        • Crothers K.
        Addressing disparities in lung cancer screening eligibility and healthcare access: an official American thoracic society statement.
        Am. J. Respir. Crit. Care Med. 2020; 202: E95-E112https://doi.org/10.1164/rccm.202008-3053ST
        • Yang S.C.
        • Der Wang J.
        • Wang S.Y.
        Considering lead-time bias in evaluating the effectiveness of lung cancer screening with real-world data.
        Sci. Rep. 2021; 11: 1-10https://doi.org/10.1038/s41598-021-91852-6
        • Tammemagi M.C.
        • Schmidt H.
        • Martel S.
        • McWilliams A.
        • Goffin J.R.
        • Johnston M.R.
        • Nicholas G.
        • Tremblay A.
        • Bhatia R.
        • Liu G.
        • Soghrati K.
        • Yasufuku K.
        • Hwang D.M.
        • Laberge F.
        • Gingras M.
        • Pasian S.
        • Couture C.
        • Mayo J.R.
        • Nasute Fauerbach P.V.
        • Atkar-Khattra S.
        • Peacock S.J.
        • Cressman S.
        • Ionescu D.
        • English J.C.
        • Finley R.J.
        • Yee J.
        • Puksa S.
        • Stewart L.
        • Tsai S.
        • Haider E.
        • Boylan C.
        • Cutz J.C.
        • Manos D.
        • Xu Z.
        • Goss G.D.
        • Seely J.M.
        • Amjadi K.
        • Sekhon H.S.
        • Burrowes P.
        • MacEachern P.
        • Urbanski S.
        • Sin D.D.
        • Tan W.C.
        • Leighl N.B.
        • Shepherd F.A.
        • Evans W.K.
        • Tsao M.S.
        • Lam S.
        Participant selection for lung cancer screening by risk modelling (the Pan-Canadian Early Detection of Lung Cancer [PanCan] study): a single-arm, prospective study.
        Lancet Oncol. 2017; 18: 1523-1531https://doi.org/10.1016/S1470-2045(17)30597-1
        • National Lung Screening Trial Research Team
        • Aberle D.R.
        • Adams A.M.
        • Berg C.D.
        • Black W.C.
        • Clapp J.D.
        • Fagerstrom R.M.
        • Gareen I.F.
        • Gatsonis C.
        • Marcus P.M.
        • Sicks J.D.
        Reduced lung-cancer mortality with low-dose computed tomographic screening.
        N. Engl. J. Med. 2011; https://doi.org/10.1056/NEJMoa1102873