Advertisement

Type-1 diabetes and pulmonary function tests. A meta-analysis

Published:September 22, 2022DOI:https://doi.org/10.1016/j.rmed.2022.106991

      Highlights

      • FEV1, FVC, FEF25–75%, PEF and DLCO are decreased for the patients with type-1 diabetes.
      • This impairment is observed in all continents, without differences by age, sex, or body mass index.
      • A decrease of FEV1, FVC, FEF25–75%, and PEF is observed in no smoker patients with type-1 diabetes.
      • Longitudinal studies are needed to investigate outcomes for patients with type-1 diabetes and impaired pulmonary function.

      Abstract

      Objectives

      To determine the association between type-1 diabetes (T1D) and pulmonary function tests.

      Methods

      After conducting an exhaustive literature search, we performed a meta-analysis. We employed the inverse variance method with a random effects model to calculate the effect estimate as the mean difference (MD) and 95% confidence interval (CI). We calculated the heterogeneity with the I2 statistic and performed a meta-regression analysis by age, sex, body mass index (BMI), smoking and geographical region. We also conducted a sensitivity analysis according to the studies’ publication date, size of the T1D group and the study quality, excluding the study with the greatest weight in the effect.

      Results

      The meta-analysis included 39 studies, one longitudinal, 35 case-control and three cross-sectional ones, with 1274 patients with T1D and 1353 control participants. The pooled MD (95%CI) for the predicted percentage of FEV1, FVC, FEF25–75%, PEF and DLCO were −6.40 (95%CI -8.55, −4.25; p < 0.001), −6.39 (95%CI -8.46, −4.33; p < 0.001), −6.14 (95%CI -10.73, −1.56; p = 0.009), −9.32 (95%CI -14.15, −4.50; p = 0.0002) and −0.64 (95%CI -1.12, −0.16; p = 0.008), respectively. There was no difference in the ratio of FEV1/FVC (−0.33 95%CI -1.70, 1.03; p = 0.28). There was considerable heterogeneity. The meta-regression analysis showed that between studies heterogeneity was not explained by patient age, sex, BMI, smoking or geographical region. The findings were consistent in the sensitivity analysis.

      Conclusions

      T1D is associated with impaired pulmonary function, independently of age, sex, smoking, BMI, and geographical region. Longitudinal studies are needed to investigate outcomes for patients with T1D and impaired pulmonary function.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Respiratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • International Diabetes Federation
        IDF Diabetes Atlas.
        ninth ed. 2019 (Available at) (Last accessed: May 05, 2020)
        • Mobasseri M.
        • ShirmoHammadi M.
        • Amiri T.
        • Vahed N.
        • Fard H.H.
        • Ghojazadeh M.
        Prevalence and incidence of type 1 diabetes in the worls: a systematic review and meta-analysis.
        Health Promot. Perspect. 2020; 10: 98-115
        • Organisation for Economic Co-Operation and Development
        Health at a glance 2019. OECD indicators.
        (Available on:) (Last accessed: January 22, 2020)
        • Lin X.
        • Xu Y.
        • Pan X.
        • Xu J.
        • Ding Y.
        • Sun X.
        • et al.
        Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025.
        Sci. Rep. 2020; 1014790
        • Gagnum V.
        • Stene L.C.
        • Leivestad T.
        • Joner G.
        • Skrivarhaug T.
        Long-term mortality and end-stage renal disease in a type-1 diabetes population diagnosed at 15-29 years in Norway.
        Diabetes Care. 2017; 40: 38-45
        • Carstersen B.
        • Ronn P.F.
        • Jorgensen M.E.
        Prevalence, incidence and mortality of type 1 and type 2 diabetes in Denmark 1996-2016.
        BMJ Open Diabetes Res. Care. 2020; 8e001071
        • Roberts T.J.
        • Burns A.T.
        • MacIsaac R.J.
        • MacIsaac A.I.
        • Prior D.L.
        • La Gerche A.
        Diagnosis and significance of pulmonary microvascular disease in diabetes.
        Diabetes Care. 2018; 41: 854-861
        • Ban C.R.
        • Twigg S.M.
        Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers.
        Vasc. Health Risk Manag. 2008; 4: 575-596
        • Van den Borst B.
        • Gosker H.R.
        • Zeegers M.P.
        • Schols M.W.J.
        Pulmonary function in diabetes. A metaanalysis.
        Chest. 2010; 138: 393-406
        • Saini M.
        • Kulandaivelan S.
        • Bansal V.K.
        • Saini V.
        • Sharma S.
        • Kaur J.
        • et al.
        Pulmonary pathology among patients with type 2 diabetes mellitus: an updated systematic review and meta-analysis.
        Curr. Diabetes Rev. 2020; 16: 759-769
        • Díez-Manglano H.
        • Asìn Samper U.
        Pulmonary function test in type-2 diabetes. A meta-analysis.
        ERJ Open Res. 2020; https://doi.org/10.1183/23120541.00371-2020
        • Schuyler M.R.
        • Niewoehner D.E.
        • Inkley S.R.
        • Kohn R.
        Abnormal lung elasticity in juvenile diabetes mellitus.
        Am. Rev. Respir. Dis. 1976; 113: 37-41
        • Schernthaner G.
        • Haber P.
        • Kummer F.
        • Ludwig H.
        Lung elasticity in juvenile-onset diabetes mellitus.
        Am. Rev. Respir. Dis. 1977; 116: 544-546
        • Sandler M.
        • Bunn A.E.
        • Stewart R.I.
        Pulmonary function in young insulin-dependent diabetic subjects.
        Chest. 1986; 90: 670-675
        • Primhak R.A.
        • Whincup G.
        • Tsanakas J.N.
        • Milner R.D.G.
        Reduced vital capacity in insulin-dependant diabetes.
        Diabetes. 1987; 36: 324-326
        • Sandler M.
        • Bunn A.E.
        • Stewart R.I.
        Cross-section study of pulmonary function in patients with insulin-dependent diabetes mellitus.
        Am. Rev. Respir. Dis. 1987; 135: 223-229
        • Bell D.
        • Collier A.
        • Mathiews D.M.
        • Cooksey E.J.
        • McHardy G.J.R.
        • Clarke B.F.
        Are reduced lung volumes in IDDM due to defect in connective tissue?.
        Diabetes. 1988; 37: 829-831
        • Heimer D.
        • Brami J.
        • Lieberman D.
        • Bark H.
        Respiratory muscle performance in patients with type 1 diabetes.
        Dia Med. 1990; 7: 434-437
        • Wanke T.
        • Formanek D.
        • Auinger M.
        • Popp W.
        • Zwick H.
        • Irsigler K.
        Inspiratory muscle performance and pulmonary function changes in insulin-dependent diabetes mellitus.
        Am. Rev. Respir. Dis. 1991; 143: 97-100
        • Baraldi E.
        • Monciotti C.
        • Filippone M.
        • Santuz P.
        • Magagnin G.
        • Zanconato S.
        • et al.
        Gas Exchange during exercise in diabetic children.
        Pediatr. Pulmonol. 1992; 13: 15-60
        • Strojek K.
        • Ziora D.
        • Sroczynski J.W.
        • Oklek K.
        Pulmonary complications of type 1 (insulin dependent) diabetic patients.
        Diabetologia. 1992; 35: 1173-1176
        • Wanke T.
        • Paternostro-Sluga T.
        • Grisold W.
        • Formanek D.
        • Auinger M.
        • Zwick H.
        • et al.
        Phrenic nerve function in type 1 diabetic patients with diaphragm weakness and peripheral neuropathy.
        Respiration. 1992; 59: 233-237
        • Quatraro A.
        • Minei A.
        • Consoli G.
        • De Rosa N.
        • Acampora R.
        • Giuliano D.
        Respiratory function in IDDM patients.
        Diabetes Care. 1993; 16: 851-852
        • Innocenti F.
        • Fabbri A.
        • Anichini R.
        • Tuci S.
        • Pettina G.
        • Vannucci F.
        • et al.
        Indications of reduced pulmonary function in type 1 (insulin-dependent) diabetes mellitus.
        Diabetes Res. Clin. Pract. 1994; 25: 161-168
        • Ayça T.E.
        • Turhan O.
        • Esra B.
        Pulmonary function of patients with juvenile diabetes mellitus.
        Paediatr. Indones. 1996; 36: 155-159
        • Fuso L.
        • Basso S.
        • De Rosa M.
        • Pistelli R.
        • Cotroneo P.
        • Manto A.
        • et al.
        Postural variations of pulmonary diffusing capacity in insulin-dependent diabetes mellitus.
        Chest. 1996; 110: 1009-1013
        • Schnack Ch
        • Festa A.
        • Schwarzmaier-D’Assié A.
        • Haber P.
        • Schernthaner G.
        Pulmonary dysfunction in type 1 diabetes in relation to metabolic long-term control and incipient diabetic nephropathy.
        Nephron. 1996; 74: 395-400
        • Niranjan V.
        • McBrayer D.G.
        • Ramirez L.C.
        • Raskin P.
        • Hsia C.C.W.
        Glycemic control and cardiopulmonary function in patients with insulin-dependent diabetes mellitus.
        Am. J. Med. 1997; 103: 504-513
        • Pieron M.
        • Scheeen A.J.
        • Corhay J.L.
        • Radermecker M.F.
        • Lefevbre P.J.
        Réactivité bronchique chez les patients diabétiques.
        Rev. Mal. Respir. 1997; 14: 379-385
        • Makkar P.
        • Gandhi M.
        • Agrawal R.P.
        • Sabir M.
        • Kothari R.P.
        Ventilatory pulmonary function tests in type 1 diabetes mellitus.
        J. Assoc. Phys. India. 2000; 48: 962-966
        • Benbassat C.A.
        • Stern E.
        • Kramer M.
        • Lebzelter J.
        • Blum I.
        • Fink G.
        Pulmonary function in patients with diabetes mellitus.
        Am. J. Med. Sci. 2001; 322: 127-132
        • Boulbou M.S.
        • Gourgoulianis K.I.
        • Petinaki E.A.
        • Klisiaris V.K.
        • Maniatis A.N.
        • Molyvdas P.A.
        Pulmonary function and circulating adhesion molecules in patients with diabetes mellitus.
        Cancer Res. J. 2003; 10: 259-264
        • Cazzato S.
        • Bernardi F.
        • Salardi S.
        • Tassinari D.
        • Corsini I.
        • Ragbi L.
        • et al.
        Lung function in children with diabetes mellitus.
        Pediatr. Pulmonol. 2004; 37: 17-23
        • Villa M.P.
        • Montesano M.
        • Barreto M.
        • Pagani J.
        • Stegagno M.
        • Multari G.
        • et al.
        Diffusing capacity for carbon monoxide in children with type 1 diabetes.
        Diabetologia. 2004; 47: 1931-1935
        • Meo S.A.
        • Al-Drees A.M.
        • Shah S.F.A.
        • Arif M.
        • Al-Rubean K.
        Lung function in type 1 Saudi diabetic patients.
        Saudi Med. J. 2005; 26: 1728-1733
        • Saler T.
        • Cakmak G.
        • Saglam Z.A.
        • Ataoglu E.
        • Erdem T.Y.
        • Yenigun M.
        The assessment of pulmonary diffusing capacity in diabetes mellitus with regard to microalbuminuria.
        Intern. Med. 2009; 48: 1939-1943
        • Verma S.
        • Goni M.
        • Kudyar R.P.
        Assessment of pulmonary functions in patients with diabetes mellitus.
        JK Sci. 2009; 11: 71-74
        • Baldi J.C.
        • Cassuto N.A.
        • Foxx-Lupo W.T.
        • Wheatley C.M.
        • Snyder E.M.
        Glycemic status affects cardiopulmonary exercise response in athletes with type I diabetes.
        Med. Sci. Sports Exerc. 2010; 42: 1454-1459
        • Komatsu W.R.
        • Barros Neto T.L.
        • Chacra A.R.
        • Dib S.A.
        Aerobic exercise capacity and pulmonary function in athletes with and without type 1 diabetes.
        Diabetes Care. 2010; 33: 2555-2557
        • Al-Habbo D.J.S.
        • Al-Ameen A.M.
        Diabetes mellitus and lung function tests.
        Ann. Coll. Med. Mosul. 2012; 38: 27-32
        • Arif K.M.
        • Jahan N.
        • Sultana N.
        • Akter R.
        FVC, FEV1 and FEV1/FVC% in type-1 diabetic male and their relationships with HbA1c.
        J. Bangladesh Soc. Physiol. 2012; 7: 23-28
        • Pieniawska A.
        • Horodnicka-Józwa A.
        • Petriczko E.
        • Walczak M.
        Evaluation of respiratory function tests in children and adolescents with type 1 diabetes.
        Pediatr. Endocrinol. Diabetes Metab. 2012; 18: 15-20
        • Scaramuzza A.E.
        • Morelli M.
        • Rizzi M.
        • Borgonovo S.
        • De Palma A.
        • Mameli C.
        • et al.
        Impaired diffusing capacity for carbon monoxide in children with type 1 diabetes: is this the first sign of long-term complications?.
        Acta Diabetol. 2012; 49: 159-164
        • Abd El-Azeem A.
        • Hamdy G.
        • Amin M.
        • Rashad A.
        Pulmonary function changes in diabetic lung.
        Egypt. J. Chest Dis. Tuberc. 2013; 62: 513-517
        • Baseer K.A.A.
        • Ismail A.M.
        • Gad G.S.
        Pulmonary function abnormalities in children with type 1 diabetes mellitus.
        J. Arab Child. 2013; 24: 271-277
        • Mohamad I.L.
        • Saad K.
        • Abedel-Azeem A.
        • Mohamed S.A.A.
        • Othman H.A.K.
        • Baseer K.A.A.
        • et al.
        Evaluation of pulmonary function changes in children with type 1 diabetes mellitus in Upper Egypt.
        Ther. Adv. Endocrinol. Metab. 2015; 6: 87-91
        • Slim I.
        • Khalaf F.
        • Latiri I.
        • Elfkih Z.
        • Rouatbi S.
        • Khochtali I.
        • et al.
        Lung function in poorly controlled type 1 North African diabetic patients: a case-control study.
        Egypt. J. Chest Dis. Tuberc. 2015; 64: 717-727
        • Durdik P.
        • Vojtkova J.
        • Michnova Z.
        • Turcan T.
        • Sujanska A.
        • Kuchta M.
        • et al.
        Pulmonary function tests in type 1 diabetes adolescents with diabetic cardiovascular autonomic neuropathy.
        J. Diabet. Complicat. 2016; 30: 79-84
        • Lee M.J.
        • Coast R.J.
        • Hempleman S.C.
        • Baldi J.C.
        Type 1 diabetes duration decreases pulmonary diffusing capacity during exercise.
        Respiration. 2016; 91: 164-170
        • Sánchez E.
        • Mizab C.
        • Saurert A.
        • Barbé F.
        • Martí R.
        • López-Cano C.
        • et al.
        Effect of subcutaneous insulin on spirometric maneuvers in patients with type 1 diabetes: a case-control study.
        J. Clin. Med. 2020; 9: 1249
        • Goldman M.D.
        Lung dysfunction in diabetes.
        Diabetes Care. 2003; 26: 195-198
        • Kaparianos A.
        • Argyropoulou E.
        • Sampsonas F.
        • Karkoulias K.
        • Tsiamita M.
        • Spiropoulos K.
        Pulmonary complications in diabetes mellitus.
        Chron. Respir. Dis. 2008; 5: 2101-2108
        • Tiengo A.
        • Fadini G.P.
        • Avogaro A.
        The metabolic syndrome, diabetes and lung dysfunction.
        Diabete Metab. 2008; 34: 447-454
        • Pitocco D.
        • Fuso L.
        • Conte E.G.
        • Zaccardi F.
        • Condoluci A.
        • Scavone G.
        • et al.
        The diabetic lung - a new target organ?.
        Rev. Diabet. Stud. 2012; 9: 23-35
        • Tashkin D.P.
        • Celli B.
        • Senn S.
        • Burkhart D.
        • Kesten S.
        • Mengoje J.
        • et al.
        UPLIFT Study investigators. A 4-year trial of tiotropium in chronic obstructive pulmonary disease.
        N. Engl. J. Med. 2008; 359: 1543-1554
        • Hanania N.A.
        • Feldman G.
        • Zachgo W.
        • Shim J.J.
        • Crim C.
        • Sandford L.
        • et al.
        The efficacy and safety of the novel long-acting β2 agonist vilanterol in patients with COPD: a randomized placebo-controlled trial.
        Chest. 2012; 142: 119-127
        • Ehrlich S.F.
        • Quesenberry Jr., C.P.
        • Van den Eeden S.K.
        • Shan J.
        • Ferrara A.
        Patients diagnosed with diabetes are at increased risk for asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and pneumonia but not lung cancer.
        Diabetes Care. 2010; 33: 55-60
        • Shen T.C.
        • Lin C.L.
        • Wei C.C.
        • Liao W.C.
        • Chen W.C.
        • Chen C.H.
        • et al.
        Increased risk of tuberculosis in patients with type- diabetes mellitus: results from a population-based cohort study in Taiwan.
        Medicine (Baltim.). 2014; 93: e96
        • Talaminos Barroso A.
        • Márquez Martín A.
        • Roa Romero L.A.
        • Ortega Ruiz F.
        Factors affecting lung function: a review of the literature.
        Arch. Bronconeumol. 2018; 54: 327-332
        • Vracko R.
        • Thorning D.
        • Huang T.W.
        Basal lamina of alveolar epithelium and capillaries: quantitative changes with aging and in diabetes mellitus.
        Am. Rev. Respir. Dis. 1979; 120: 973-983
        • Weynand B.
        • Jonckheere A.
        • Frans A.
        • Rahier J.
        Diabetes mellitus induces a thickening of the pulmonary basal lamina.
        Respiration. 1999; 66: 14-19
        • Talakatta G.
        • Sarikhani M.
        • Muhamed J.
        • Dhanya K.
        • Somashekar B.S.
        • Mahesh P.A.
        • et al.
        Diabetes induces fibrotic changes in the lung through the activation of TGF-β signaling pathways.
        Sci. Rep. 2018; 811920
        • Hu Y.
        • Ma Z.
        • Guo Z.
        • Zhao F.
        • Wang Y.
        • Cai L.
        • et al.
        Type 1 diabetes mellitus is an independent risk factor for pulmonary fibrosis.
        Cell Biochem. Byophys. 2014; 70: 1385-1391
        • Südy R.
        • Schranc A.
        • Fodor G.H.
        • Tolnai J.
        • Babik B.
        • Peták F.
        Lung volume dependence of respiratory function in rodent models of diabetes mellitus.
        Respir. Res. 2020; 21: 82
        • Mameli C.
        • Ghezzi M.
        • Mari A.
        • Cammi G.
        • Macedoni M.
        • Redaelli F.C.
        • et al.
        The diabetic lung: insights into pulmonary changes in children and adolescents with type 1 diabetes.
        Metabolites. 2021; 11: 69
        • Zheng H.
        • Wu J.
        • Jin Z.
        • Yan L.J.
        Potential biochemical mechanisms of lung injury in diabetes.
        Aging Dis. 2017; 8: 7-16
        • Wu J.
        • Jin Z.
        • Yan L.J.
        Redox imbalance and mitocondrial abnormalities in the diabetic lung.
        Redox Biol. 2017; 11: 51-59
        • Wang C.M.
        • Hsu C.T.
        • Niu H.S.
        • Chang C.H.
        • Cheng J.T.
        • Shieh J.M.
        Lung damage induced by hyperglycemia in diabetics rats: the role of signal transducer and activator of transcription 3.
        J. Diabet. Complicat. 2016; 30: 1426-1433