Immunomodulatory potential of apolipoproteins and their mimetic peptides in asthma: Current perspective

Published:October 06, 2022DOI:


      Asthma prevailed as a common inflammatory disease affecting mainly the lower respiratory tract, with notable inflammation in the upper airways leading to significant morbidity and mortality. An extensive search for a new therapeutic target is continuously being carried out. Still, the majority have failed in the trials, and eventually, the drugs, including β2-adrenergic agonists, muscarinic antagonists, and certain corticosteroids, remain the backbone for asthma control. Numerous endogenous factors aid in maintaining the normal homeostasis of the lungs and prevents disease progression. One among them is the apolipoproteins which are different sets of lipoprotein moieties that not only aid in the transport and metabolism of lipids but also impart immunomodulatory roles in various pathologies. Modern research joins the links between the immunomodulatory nature of apolipoproteins in chronic respiratory diseases like asthma and COPD, which can assist in ameliorating the disease progression. Recent studies have elucidated the protective roles of apoA-I and apoE in asthma. This has enabled the utilization of certain apolipoprotein-mimetic peptides to treat these severe pulmonary diseases in the long run. In this review, we have described the prominent and probable mechanistic roles of apolipoproteins like apoA-I, apoB, apoE, apoJ, and apoM in the pathogenesis and treatment of asthma along with the development of apoA-I and apoE-mimetics as a cardinal treatment strategy for eosinophilic as well as corticosteroid resistant neutrophilic asthma.

      Graphical abstract


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Respiratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Murdoch J.R.
        • Lloyd C.M.
        Chronic inflammation and asthma.
        Mutat. Res. 2010; 690: 24-39
        • Athari S.S.
        Targeting cell signaling in allergic asthma.
        Signal Transduct. Targeted Ther. 2019; 4: 45
        • Carr T.F.
        • Zeki A.A.
        • Kraft M.
        Eosinophilic and noneosinophilic asthma.
        Am. J. Respir. Crit. Care Med. 2018; 197: 22-37
        • Kuruvilla M.E.
        • Lee F.E.
        • Lee G.B.
        Understanding asthma phenotypes, endotypes, and mechanisms of disease.
        Clin. Rev. Allergy Immunol. 2019; 56: 219-233
        • Hamid Q.
        • et al.
        Inflammatory cells in asthma: mechanisms and implications for therapy.
        J. Allergy Clin. Immunol. 2003; 111 (; discussion S12-7): S5-S12
        • Chung K.F.
        • et al.
        International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma.
        Eur. Respir. J. 2014; 43: 343-373
        • Esteban-Gorgojo I.
        • et al.
        Non-eosinophilic asthma: current perspectives.
        J. Asthma Allergy. 2018; 11: 267-281
        • León B.
        • Ballesteros-Tato A.
        Modulating Th2 cell immunity for the treatment of asthma.
        Front. Immunol. 2021; 12
        • Ray A.
        • Kolls J.K.
        Neutrophilic inflammation in asthma and association with disease severity.
        Trends Immunol. 2017; 38: 942-954
        • Ito K.
        • et al.
        Steroid-resistant neutrophilic inflammation in a mouse model of an acute exacerbation of asthma.
        Am. J. Respir. Cell Mol. Biol. 2008; 39: 543-550
        • Bakakos A.
        • Loukides S.
        • Bakakos P.
        Severe eosinophilic asthma.
        J. Clin. Med. 2019; 8
        • Mehta A.
        • Shapiro M.D.
        Apolipoproteins in vascular biology and atherosclerotic disease.
        Nat. Rev. Cardiol. 2022; 19: 168-179
        • Liu C.-C.
        • et al.
        Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy.
        Nat. Rev. Neurol. 2013; 9: 106-118
        • Patsch W.
        • Gotto Jr., A.M.
        Apolipoproteins: pathophysiology and clinical implications.
        Methods Enzymol. 1996; 263: 3-32
        • Ahmed S.
        • Pande A.H.
        • Sharma S.S.
        Therapeutic potential of ApoE-mimetic peptides in CNS disorders: current perspective.
        Exp. Neurol. 2022; 353114051
        • Jonas A.
        • Phillips M.C.
        Chapter 17 - lipoprotein structure.
        in: Vance D.E. Vance J.E. Biochemistry of Lipids, Lipoproteins and Membranes. fifth ed. Elsevier, San Diego2008: 485-506
        • Yao X.
        • et al.
        Apolipoprotein E negatively regulates house dust mite-induced asthma via a low-density lipoprotein receptor-mediated pathway.
        Am. J. Respir. Crit. Care Med. 2010; 182: 1228-1238
        • Yao X.
        • et al.
        Emerging roles of apolipoprotein E and apolipoprotein A-I in the pathogenesis and treatment of lung disease.
        Am. J. Respir. Cell Mol. Biol. 2016; 55: 159-169
        • Figueroa D.M.
        • et al.
        Apolipoproteins as context-dependent regulators of lung inflammation.
        in: Johnston R.A. Suratt B.T. Mechanisms and Manifestations of Obesity in Lung Disease. Academic Press, 2019: 301-326
        • Yao X.
        • et al.
        Apolipoprotein mimetic peptides: a new approach for the treatment of asthma.
        Front. Pharmacol. 2012; 3: 37
        • Lambrecht B.N.
        • Hammad H.
        The immunology of asthma.
        Nat. Immunol. 2015; 16: 45-56
        • Enilari O.
        • Sinha S.J.A.
        The Global Impact of Asthma in Adult Populations. vol. 85. 2019 (1)
        • Simpson J.L.
        • et al.
        Inflammatory Subtypes in Asthma: Assessment and Identification Using Induced Sputum. vol. 11. 2006: 54-61 (1)
        • Busse W.W.
        • et al.
        Understanding the key issues in the treatment of uncontrolled persistent asthma with type 2 inflammation.
        J Eur. Resp. 2021; 582003393
        • Teran L.M.J.I.t.
        CCL Chemokines. Asthma. 2000; 21: 235-242
        • Nakagome K.
        • Nagata M.J.F.i.i.
        Involvement and Possible Role of Eosinophils in Asthma Exacerbation.
        2018: 2220
        • Qu J.
        • et al.
        Recent developments in the role of reactive oxygen species in allergic asthma.
        J. Thorac. Dis. 2017; 9: E32-e43
        • Frigas E.
        • Gleich G.J.
        The eosinophil and the pathophysiology of asthma.
        J. Allergy Clin. Immunol. 1986; 77: 527-537
        • Trivedi S.G.
        • Lloyd C.M.
        Eosinophils in the pathogenesis of allergic airways disease.
        Cell. Mol. Life Sci. 2007; 64: 1269-1289
        • Saha S.
        • et al.
        Granulocyte-macrophage colony-stimulating factor expression in induced sputum and bronchial mucosa in asthma and COPD.
        Thorax. 2009; 64: 671-676
        • Dhagat U.
        • et al.
        The mechanism of GM-CSF inhibition by human GM-CSF auto-antibodies suggests novel therapeutic opportunities.
        mAbs. 2018; 10: 1018-1029
        • Montuschi P.
        Role of leukotrienes and leukotriene modifiers in asthma.
        Pharmaceuticals. 2010; 3: 1792-1811
        • O'Donnell S.R.
        Leukotrienes-biosynthesis and Mechanisms of Action.
        • Kaur R.
        • Chupp G.J.J.o.A.
        • Immunology C.
        Phenotypes and Endotypes of Adult Asthma: Moving toward Precision Medicine. vol. 144. 2019: 1-12 (1)
        • Stokes J.R.
        • Casale T.B.
        Characterization of asthma endotypes: implications for therapy.
        Ann. Allergy Asthma Immunol. 2016; 117: 121-125
        • Wenzel S.E.
        Asthma phenotypes: the evolution from clinical to molecular approaches.
        Nat. Med. 2012; 18: 716-725
        • Casale T.B.
        Biologics and biomarkers for asthma, urticaria, and nasal polyposis.
        J. Allergy Clin. Immunol. 2017; 139: 1411-1421
        • Nair P.
        • et al.
        Safety and efficacy of a CXCR 2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo‐controlled clinical trial.
        Clin. Exp. Allergy. 2012; 42: 1097-1103
        • O'Byrne P.M.
        • et al.
        Efficacy and Safety of a CXCR2 Antagonist, AZD5069, in Patients with Uncontrolled Persistent Asthma: a Randomised, Double-Blind, Placebo-Controlled Trial. vol. 4. 2016: 797-806 (10)
        • Wenzel S.E.
        • et al.
        A Randomized, Double-Blind, Placebo-Controlled Study of Tumor Necrosis Factor-α Blockade in Severe Persistent Asthma. vol. 179. 2009: 549-558 (7)
        • Hernandez M.L.
        • et al.
        IL-1 Receptor Antagonist Reduces Endotoxin-Induced Airway Inflammation in Healthy Volunteers. vol. 135. 2015: 379-385 (2)
        • Rabe K.F.
        • et al.
        Effect of roflumilast in patients with severe COPD and a history of hospitalisation.
        J Eur. Resp J. 2017; 501700158
        • Mercado N.
        • et al.
        Restoration of corticosteroid sensitivity by p38 mitogen activated protein kinase inhibition in peripheral blood mononuclear cells from severe asthma.
        PLoS One. 2012; 7e41582
        • Chaudhuri R.
        • et al.
        Effects of a FLAP inhibitor, GSK2190915, in asthmatics with high sputum neutrophils.
        Pulm. Pharmacol. Therapeut. 2014; 27: 62-69
        • Lee Y.G.
        • et al.
        Recruited alveolar macrophages, in response to airway epithelial–derived monocyte chemoattractant protein 1/CCL2, regulate airway inflammation and remodeling in allergic asthma.
        Am. J. Respir. Cell Mol. Biol. 2014; 52: 772-784
        • Goleva E.
        • et al.
        (3)Corticosteroid-resistant Asthma Is Associated with Classical Antimicrobial Activation of Airway Macrophages. vol. 122. 2008: 550-559 (e3)
        • Mantovani A.
        • et al.
        (12)The Chemokine System in Diverse Forms of Macrophage Activation and Polarization. vol. 25. 2004: 677-686
        • Saradna A.
        • et al.
        Macrophage polarization and allergic asthma.
        Transl. Res. 2018; 191: 1-14
        • Herbert C.
        • et al.
        (4)Alveolar Macrophages Stimulate Enhanced Cytokine Production by Pulmonary CD4+ T-Lymphocytes in an Exacerbation of Murine Chronic Asthma. vol. 177. 2010: 1657-1664
        • Yao X.
        • et al.
        Emerging roles of apolipoprotein E and apolipoprotein A-I in the pathogenesis and treatment of lung disease.
        Am. J. Respir. Cell Mol. Biol. 2016; 55: 159-169
        • Figueroa D.M.
        • et al.
        Chapter 13 - apolipoproteins as context-dependent regulators of lung inflammation.
        in: Johnston R.A. Suratt B.T. Mechanisms and Manifestations of Obesity in Lung Disease. Academic Press, 2019: 301-326
        • Cho N.-H.
        • Seong S.-Y.
        Apolipoproteins inhibit the innate immunity activated by necrotic cells or bacterial endotoxin.
        Immunology. 2009; 128: e479-e486
        • Habiel D.M.
        • et al.
        Divergent roles for clusterin in lung injury and repair.
        Sci. Rep. 2017; 7: 15444
        • Rhee E.J.
        • Byrne C.D.
        • Sung K.C.
        The HDL cholesterol/apolipoprotein A-I ratio: an indicator of cardiovascular disease.
        Curr. Opin. Endocrinol. Diabetes Obes. 2017; 24: 148-153
        • Georgila K.
        • Vyrla D.
        • Drakos E.
        Apolipoprotein A-I (ApoA-I), immunity, inflammation and cancer.
        Cancers. 2019; 11
        • Gordon E.M.
        • et al.
        High-density lipoproteins and apolipoprotein A-I: potential new players in the prevention and treatment of lung disease.
        Front. Pharmacol. 2016; 7
        • Korhonen J.T.
        • et al.
        ABC-cassette transporter 1 (ABCA1) expression in epithelial cells in Chlamydia pneumoniae infection.
        Microb. Pathog. 2013; 61–62: 57-61
        • Li G.
        • Gu H.-M.
        • Zhang D.-W.
        ATP-binding cassette transporters and cholesterol translocation.
        IUBMB Life. 2013; 65: 505-512
        • Shen W.-J.
        • Azhar S.
        • Kraemer F.B.
        SR-B1: a unique multifunctional receptor for cholesterol influx and efflux.
        Annu. Rev. Physiol. 2018; 80: 95-116
        • Wang M.
        • et al.
        Impaired anti-inflammatory action of glucocorticoid in neutrophil from patients with steroid-resistant asthma.
        Respir. Res. 2016; 17: 153
        • Dai C.
        • et al.
        Apolipoprotein A-I attenuates ovalbumin-induced neutrophilic airway inflammation via a granulocyte colony-stimulating factor-dependent mechanism.
        Am. J. Respir. Cell Mol. Biol. 2012; 47: 186-195
        • Young S.G.
        Recent progress in understanding apolipoprotein B.
        Circulation. 1990; 82: 1574-1594
      1. Devaraj, S., J.R. Semaan, and I. Jialal, Biochemistry, apolipoprotein B, in StatPearls. 2022, StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.: Treasure Island (FL).

        • Nakajima K.
        • et al.
        Chapter three - apolipoprotein B-48: a unique marker of chylomicron metabolism.
        in: Makowski G.S. Advances in Clinical Chemistry. Elsevier, 2014: 117-177
        • Heo J.W.
        • et al.
        The association between serum apolipoprotein B and fractional exhaled nitric oxide in bronchial asthma patients.
        J. Thorac. Dis. 2021; 13: 4195-4206
        • Pettersson M.E.
        • et al.
        Apolipoprotein B: a possible new biomarker for anaphylaxis.
        Ann. Allergy Asthma Immunol. 2017; 118: 515-516
        • Perelman B.
        • Adil A.
        • Vadas P.
        Relationship between platelet activating factor acetylhydrolase activity and apolipoprotein B levels in patients with peanut allergy.
        Allergy Asthma Clin. Immunol. 2014; 10: 20
        • Bu G.
        Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy.
        Nat. Rev. Neurosci. 2009; 10: 333-344
        • Giau V.V.
        • et al.
        Role of apolipoprotein E in neurodegenerative diseases.
        Neuropsychiatric Dis. Treat. 2015; 11: 1723-1737
        • Massaro D.
        • Massaro G.D.
        Apoetm1Unc mice have impaired alveologenesis, low lung function, and rapid loss of lung function.
        Am. J. Physiol. Lung Cell Mol. Physiol. 2008; 294: L991-L997
        • Yamashita C.M.
        • et al.
        Apolipoprotein E-deficient mice are susceptible to the development of acute lung injury.
        Respiration. 2014; 87: 416-427
        • Tudorache I.F.
        • Trusca V.G.
        • Gafencu A.V.
        Apolipoprotein E - a multifunctional protein with implications in various pathologies as a result of its structural features.
        Comput. Struct. Biotechnol. J. 2017; 15: 359-365
        • Trougakos I.P.
        The molecular chaperone apolipoprotein J/clusterin as a sensor of oxidative stress: implications in therapeutic approaches - a mini-review.
        Gerontology. 2013; 59: 514-523
        • Klock G.
        • Baiersdörfer M.
        • Koch-Brandt C.
        Chapter 7: cell protective functions of secretory Clusterin (sCLU).
        Adv. Cancer Res. 2009; 104: 115-138
        • Gelissen I.C.
        • et al.
        Apolipoprotein J (clusterin) induces cholesterol export from macrophage-foam cells: a potential anti-atherogenic function?.
        Biochem. J. 1998; 331 (Pt 1)(Pt 1): 231-237
        • Dombai B.
        • et al.
        Circulating clusterin and osteopontin levels in asthma and asthmatic pregnancy.
        Can. Respir. J. J. Can. Thorac. Soc. 2017; (2017)1602039
        • Hong G.H.
        • et al.
        Clusterin modulates allergic airway inflammation by attenuating CCL20-mediated dendritic cell recruitment.
        J. Immunol. 2016; 196: 2021-2030
        • Sobeih A.A.
        • et al.
        Clusterin in atopic and non-atopic childhood asthma.
        Scand. J. Clin. Lab. Investig. 2019; 79: 368-371
        • Sol I.
        • et al.
        Relationship between sputum clusterin levels and childhood asthma.
        Clin. Exp. Allergy. 2016; 46: 688-695
        • Luo G.
        • et al.
        Apolipoprotein M.
        Lipids Health Dis. 2004; 3: 21
        • Huang L.Z.
        • et al.
        Apolipoprotein M: research progress, regulation and metabolic functions (Review).
        Mol. Med. Rep. 2015; 12: 1617-1624
        • Zhu Y.
        • et al.
        Apolipoprotein M promotes proliferation and invasion in non-small cell lung cancers via upregulating S1PR1 and activating the ERK1/2 and PI3K/AKT signaling pathways.
        Biochem. Biophys. Res. Commun. 2018; 501: 520-526
        • Zhu B.
        • et al.
        Apolipoprotein M protects against lipopolysaccharide-induced acute lung injury via sphingosine-1-phosphate signaling.
        Inflammation. 2018; 41: 643-653
        • Li H.
        • et al.
        High apolipoprotein M serum levels correlate with chronic obstructive pulmonary disease.
        Lipids Health Dis. 2016; 15: 59
        • Park J.H.
        • et al.
        Association between high-density lipoprotein cholesterol level and pulmonary function in healthy Korean adolescents: the JS high school study.
        BMC Pulm. Med. 2017; 17: 190
        • Trakaki A.
        • Marsche G.
        Current understanding of the immunomodulatory activities of high-density lipoproteins.
        Biomedicines. 2021; 9: 587
        • Hyka N.
        • et al.
        Apolipoprotein A-I inhibits the production of interleukin-1beta and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes.
        Blood. 2001; 97: 2381-2389
        • Liao X.L.
        • et al.
        Neutrophils activation can be diminished by apolipoprotein A-I.
        Life Sci. 2005; 77: 325-335
        • Blackburn Jr., W.D.
        • et al.
        Apolipoprotein A-I decreases neutrophil degranulation and superoxide production.
        J. Lipid Res. 1991; 32: 1911-1918
        • Hamilton K.K.
        • Sims P.J.
        The terminal complement proteins C5b-9 augment binding of high density lipoprotein and its apolipoproteins A-I and A-II to human endothelial cells.
        J. Clin. Invest. 1991; 88: 1833-1840
        • Gao P.
        • et al.
        Pentraxin 3 promotes airway inflammation in experimental asthma.
        Respir. Res. 2020; 21: 1-10
        • Wu J.
        • et al.
        Serum apolipoprotein B-to-apolipoprotein A1 ratio is independently associated with disease severity in patients with acute pancreatitis.
        Sci. Rep. 2019; 9: 7764
        • Nagel G.
        • et al.
        Association of apolipoproteins with symptoms of asthma and atopy among schoolchildren.
        Int. Arch. Allergy Immunol. 2009; 149: 259-266
        • Zhang H.
        • Wu L.M.
        • Wu J.
        Cross-talk between apolipoprotein E and cytokines.
        Mediat. Inflamm. 2011; (2011)949072
        • McKay S.
        • et al.
        Pro-inflammatory cytokines induce c-fos expression followed by IL-6 release in human airway smooth muscle cells.
        Mediat. Inflamm. 2001; 10: 135-142
        • Noguchi T.
        • et al.
        Apolipoprotein E plays crucial roles in maintaining bone mass by promoting osteoblast differentiation via ERK1/2 pathway and by suppressing osteoclast differentiation via c-Fos, NFATc1, and NF-κB pathway.
        Biochem. Biophys. Res. Commun. 2018; 503: 644-650
        • Wei L.
        • et al.
        IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner.
        J. Biol. Chem. 2007; 282: 34605-34610
        • Zhao Y.
        • et al.
        Th17 immunity in patients with allergic asthma.
        Int. Arch. Allergy Immunol. 2010; 151: 297-307
        • Tesmer L.A.
        • et al.
        Th17 cells in human disease.
        Immunol. Rev. 2008; 223: 87-113
        • Tortola L.
        • et al.
        IL-21 promotes allergic airway inflammation by driving apoptosis of FoxP3(+) regulatory T cells.
        J. Allergy Clin. Immunol. 2019; 143 (e5 DOI:): 2178-2189
        • Hirose K.
        • Takahashi K.
        • Nakajima H.
        Roles of IL-22 in allergic airway inflammation.
        J. Allergy. 2013; (2013)260518
        • Wei J.
        • et al.
        Apolipoprotein E and its mimetic peptide suppress Th1 and Th17 responses in experimental autoimmune encephalomyelitis.
        Neurobiol. Dis. 2013; 56: 59-65
        • Vargas A.
        • et al.
        Neutrophil extracellular traps are downregulated by glucocorticosteroids in lungs in an equine model of asthma.
        Respir. Res. 2017; 18: 207
        • Yang H.
        • et al.
        New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation.
        Front. Immunol. 2016; 7
        • Zhou Z.
        • et al.
        Excessive neutrophil extracellular trap formation aggravates acute myocardial infarction injury in apolipoprotein E deficiency mice via the ROS-dependent pathway.
        Oxid. Med. Cell. Longev. 2019; (2019)1209307
        • Zhang H.
        • et al.
        Role of IL-18 in atopic asthma is determined by balance of IL-18/IL-18BP/IL-18R.
        J. Cell Mol. Med. 2018; 22: 354-373
        • Nakanishi K.
        Unique action of interleukin-18 on T cells and other immune cells.
        Front. Immunol. 2018; 9
        • Kumar R.K.
        • et al.
        Interferon-γ, pulmonary macrophages and airway responsiveness in asthma.
        Inflamm. Allergy - Drug Targets. 2012; 11: 292-297
        • Kumar R.K.
        • et al.
        Interferon-gamma as a possible target in chronic asthma.
        Inflamm. Allergy - Drug Targets. 2006; 5: 253-256
        • Barnes P.J.
        Cellular and molecular mechanisms of chronic obstructive pulmonary disease.
        Clin. Chest Med. 2014; 35: 71-86
        • Meyts I.
        • et al.
        IL-12 contributes to allergen-induced airway inflammation in experimental asthma.
        J. Immunol. 2006; 177: 6460-6470
        • Leonard P.
        • Sur S.
        Interleukin-12: potential role in asthma therapy.
        BioDrugs. 2003; 17: 1-7
        • Ye Y.L.
        • et al.
        Interleukin-12 inhibits eotaxin secretion of cultured primary lung cells and alleviates airway inflammation in vivo.
        Cytokine. 2002; 19: 76-84
        • Ali K.
        • et al.
        Apolipoprotein E suppresses the type I inflammatory response in vivo.
        Circ. Res. 2005; 97: 922-927
        • Sjöberg L.C.
        • et al.
        Interleukin 33 exacerbates antigen driven airway hyperresponsiveness, inflammation and remodeling in a mouse model of asthma.
        Sci. Rep. 2017; 7: 4219
        • Chan B.C.L.
        • et al.
        IL33: roles in allergic inflammation and therapeutic perspectives.
        Front. Immunol. 2019; 10
        • Griesenauer B.
        • Paczesny S.
        The ST2/IL-33 Axis in immune cells during inflammatory diseases.
        Front. Immunol. 2017; 8
        • Bhowmik M.
        • et al.
        Pilot-scale study of human plasma proteomics identifies ApoE and IL33 as markers in atopic asthma.
        J. Asthma Allergy. 2019; 12: 273-283
        • Zhang X.
        • Köhl J.
        A complex role for complement in allergic asthma.
        Expet Rev. Clin. Immunol. 2010; 6: 269-277
        • Dunkelberger J.R.
        • Song W.-C.
        Complement and its role in innate and adaptive immune responses.
        Cell Res. 2010; 20: 34-50
        • Ghosh S.
        • et al.
        Enumerating the role of properdin in the pathogenesis of IgA nephropathy and its possible therapies.
        Int. Immunopharm. 2021; 93107429
        • Matsushita M.
        • et al.
        Proteolytic activities of two types of mannose-binding lectin-associated serine protease.
        J. Immunol. 2000; 165: 2637-2642
        • Khan M.A.
        • Assiri A.M.
        • Broering D.C.
        Complement mediators: key regulators of airway tissue remodeling in asthma.
        J. Transl. Med. 2015; 13: 272
        • Chauhan A.K.
        • Moore T.L.
        Presence of plasma complement regulatory proteins clusterin (Apo J) and vitronectin (S40) on circulating immune complexes (CIC).
        Clin. Exp. Immunol. 2006; 145: 398-406
        • Mohamed M.M.E.
        • Nicklin A.D.
        • Stover C.M.
        The value of targeting complement components in asthma.
        Medicina. 2020; 56: 405
        • Larbi A.
        • et al.
        Immunomodulatory role of high-density lipoproteins: impact on immunosenescence.
        Age. 2014; 36: 9712
        • Burkart K.M.
        • et al.
        APOM and high-density lipoprotein cholesterol are associated with lung function and per cent emphysema.
        Eur. Respir. J. 2014; 43: 1003-1017
        • Kawa Y.
        • et al.
        Role of S1P/S1PR3 axis in release of CCL20 from human bronchial epithelial cells.
        PLoS One. 2018; 13e0203211
        • Navab M.
        • et al.
        HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms.
        Nat. Rev. Cardiol. 2011; 8: 222-232
        • Ditiatkovski M.
        • et al.
        Apolipoprotein A-I Mimetic Peptides.
        Arterioscler. Thromb. Vasc. Biol. 2017; 37: 1301-1306
        • Yao X.
        • et al.
        The A's have it: developing apolipoprotein A-I mimetic peptides into a novel treatment for asthma.
        Chest. 2016; 150: 283-288
        • Yao X.
        • et al.
        5A, an apolipoprotein A-I mimetic peptide, attenuates the induction of house dust mite-induced asthma.
        J. Immunol. 2011; 186: 576-583
        • Nandedkar S.D.
        • et al.
        D-4F, an apoA-1 mimetic, decreases airway hyperresponsiveness, inflammation, and oxidative stress in a murine model of asthma.
        J. Lipid Res. 2011; 52: 499-508
        • Madenspacher J.H.
        • et al.
        Apolipoproteins and apolipoprotein mimetic peptides modulate phagocyte trafficking through chemotactic activity.
        J. Biol. Chem. 2012; 287: 43730-43740
        • You J.
        • et al.
        D-4F, an apolipoprotein A-I mimetic, inhibits TGF-β1 induced epithelial-mesenchymal transition in human alveolar epithelial cell.
        Exp. Toxicol. Pathol. 2016; 68: 533-541
        • Lalazar A.
        • et al.
        Site-specific mutagenesis of human apolipoprotein E. Receptor binding activity of variants with single amino acid substitutions.
        J. Biol. Chem. 1988; 263: 3542-3545
        • Mahley R.W.
        • Weisgraber K.H.
        • Huang Y.
        Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer's disease to AIDS.
        J. Lipid Res. 2009; 50 (Suppl(Suppl)): S183-S188
        • Wolska A.
        • et al.
        Apolipoprotein mimetic peptides: potential new therapies for cardiovascular diseases.
        Cells. 2021; 10: 597
        • Yao X.
        • et al.
        Apolipoprotein E negatively regulates house dust mite-induced asthma via a low-density lipoprotein receptor-mediated pathway.
        Am. J. Respir. Crit. Care Med. 2010; 182: 1228-1238
        • Christensen D.J.
        • et al.
        Apolipoprotein E and peptide mimetics modulate inflammation by binding the SET protein and activating protein phosphatase 2A.
        J. Immunol. 2011; 186: 2535
        • Rahman M.M.
        • et al.
        Basal protein phosphatase 2A activity restrains cytokine expression: role for MAPKs and tristetraprolin.
        Sci. Rep. 2015; 5: 10063
        • Dai C.
        • et al.
        Apolipoprotein A-I attenuates ovalbumin-induced neutrophilic airway inflammation via a granulocyte colony-stimulating factor-dependent mechanism.
        Am. J. Respir. Cell Mol. Biol. 2012; 47: 186-195
        • Madenspacher J.H.
        • et al.
        Apolipoproteins and apolipoprotein mimetic peptides modulate phagocyte trafficking through chemotactic activity *.
        J. Biol. Chem. 2012; 287: 43730-43740