Advertisement

Early chronic obstructive pulmonary disease: Associations of two spirometry criteria with clinical features

Published:October 12, 2022DOI:https://doi.org/10.1016/j.rmed.2022.107011

      Highlights

      • Two spirometry early COPD criteria were associated with different clinical features.
      • Asthma history and early COPD with low FEV1/FVC and rapid FEV1 decline.
      • BMI change/low exercise and early COPD with normal FEV1/FVC and rapid FEV1 decline.

      Abstract

      Background

      Two spirometry criteria have been proposed for early chronic obstructive pulmonary disease (COPD) in young smokers: 1) forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) < the lower limit of normal (LLN), and 2) FEV1 decline ≥60 ml/year. These criteria have yet to be validated. This study explored clinical factors associated with these two spirometry criteria.

      Methods

      This retrospective study analysed medical check-up data from 13,010 consecutive subjects aged <50 years who underwent current and 3 previous spirometry tests in Japan. Current ≥10 pack-year smokers were the main focus of analysis; those meeting one or more spirometry criteria were diagnosed with early COPD. Early COPD was categorized into three subtypes: FEV1/FVC < LLN and FEV1 decline <60 ml/year (type 1), FEV1/FVC ≥ LLN and FEV1 decline ≥60 ml/year (type 2), and FEV1/FVC < LLN and FEV1 decline ≥60 ml/year (type 3).

      Results

      Of the 1579 current ≥ 10 pack-year smokers, 488 (30.9%) met the early COPD criteria. Multivariate multinomial logistic models adjusted for age, sex, height, body mass index (BMI) and smoking history indicated that past BMI increase and low exercise were associated with higher type 2 early COPD incidence (odds ratio (OR) [95% confidence interval (CI)] = 4.30 [3.10, 6.04], and 0.80 [0.69, 0.93], respectively) but not with higher type 1 incidence. A history of asthma was associated with higher type 3 incidence (OR [95% CI] = 1.98 [1.18, 3.07]).

      Conclusions

      The 3 types of spirometry-based early COPD have different clinical factors. Their trajectories should be explored in longitudinal studies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Respiratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Koo H.K.
        • Vasilescu D.M.
        • Booth S.
        • Hsieh A.
        • Katsamenis O.L.
        • Fishbane N.
        • Elliott W.M.
        • Kirby M.
        • Lackie P.
        • Sinclair I.
        • Warner J.A.
        • Cooper J.D.
        • Coxson H.O.
        • Paré P.D.
        • Hogg J.C.
        • Hackett T.L.
        Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study.
        Lancet Respir. Med. 2018; 6: 591-602https://doi.org/10.1016/s2213-2600(18)30196-6
        • Tantucci C.
        • Modina D.
        Lung function decline in COPD.
        Int. J. Chronic Obstr. Pulm. Dis. 2012; 7: 95-99https://doi.org/10.2147/copd.S27480
        • Chin R.C.
        • Guenette J.A.
        • Cheng S.
        • Raghavan N.
        • Amornputtisathaporn N.
        • Cortés-Télles A.
        • Webb K.A.
        • O'Donnell D.E.
        Does the respiratory system limit exercise in mild chronic obstructive pulmonary disease?.
        Am. J. Respir. Crit. Care Med. 2013; 187: 1315-1323https://doi.org/10.1164/rccm.201211-1970OC
        • Zhou Y.
        • Zhong N.S.
        • Li X.
        • Chen S.
        • Zheng J.
        • Zhao D.
        • Yao W.
        • Zhi R.
        • Wei L.
        • He B.
        • Zhang X.
        • Yang C.
        • Li Y.
        • Li F.
        • Du J.
        • Gui J.
        • Hu B.
        • Bai C.
        • Huang P.
        • Chen G.
        • Xu Y.
        • Wang C.
        • Liang B.
        • Li Y.
        • Hu G.
        • Tan H.
        • Ye X.
        • Ma X.
        • Chen Y.
        • Hu X.
        • Tian J.
        • Zhu X.
        • Shi Z.
        • Du X.
        • Li M.
        • Liu S.
        • Yu R.
        • Zhao J.
        • Ma Q.
        • Xie C.
        • Li X.
        • Chen T.
        • Lin Y.
        • Zeng L.
        • Ye C.
        • Ye W.
        • Luo X.
        • Zeng L.
        • Yu S.
        • Guan W.J.
        • Ran P.
        Tiotropium in early-stage chronic obstructive pulmonary disease.
        N. Engl. J. Med. 2017; 377: 923-935https://doi.org/10.1056/NEJMoa1700228
        • Martinez F.J.
        • Han M.K.
        • Allinson J.P.
        • Barr R.G.
        • Boucher R.C.
        • Calverley P.M.A.
        • Celli B.R.
        • Christenson S.A.
        • Crystal R.G.
        • Fagerås M.
        • Freeman C.M.
        • Groenke L.
        • Hoffman E.A.
        • Kesimer M.
        • Kostikas K.
        • Paine R.
        • Rafii S.
        • Rennard S.I.
        • Segal L.N.
        • Shaykhiev R.
        • Stevenson C.
        • Tal-Singer R.
        • Vestbo J.
        • Woodruff P.G.
        • Curtis J.L.
        • Wedzicha J.A.
        At the root: defining and halting progression of early chronic obstructive pulmonary disease.
        Am. J. Respir. Crit. Care Med. 2018; 197: 1540-1551https://doi.org/10.1164/rccm.201710-2028PP
        • Lange P.
        • Celli B.
        • Agustí A.
        • Boje Jensen G.
        • Divo M.
        • Faner R.
        • Guerra S.
        • Marott J.L.
        • Martinez F.D.
        • Martinez-Camblor P.
        • Meek P.
        • Owen C.A.
        • Petersen H.
        • Pinto-Plata V.
        • Schnohr P.
        • Sood A.
        • Soriano J.B.
        • Tesfaigzi Y.
        • Vestbo J.
        Lung-function trajectories leading to chronic obstructive pulmonary disease.
        N. Engl. J. Med. 2015; 373: 111-122https://doi.org/10.1056/NEJMoa1411532
        • Vestbo J.
        • Edwards L.D.
        • Scanlon P.D.
        • Yates J.C.
        • Agusti A.
        • Bakke P.
        • Calverley P.M.
        • Celli B.
        • Coxson H.O.
        • Crim C.
        • Lomas D.A.
        • MacNee W.
        • Miller B.E.
        • Silverman E.K.
        • Tal-Singer R.
        • Wouters E.
        • Rennard S.I.
        Changes in forced expiratory volume in 1 second over time in COPD.
        N. Engl. J. Med. 2011; 365: 1184-1192https://doi.org/10.1056/NEJMoa1105482
        • Diaz A.A.
        • Hardin M.E.
        • Come C.E.
        • San Jose Estepar R.
        • Ross J.C.
        • Kurugol S.
        • Okajima Y.
        • Han M.K.
        • Kim V.
        • Ramsdell J.
        • Silverman E.K.
        • Crapo J.D.
        • Lynch D.A.
        • Make B.
        • Barr R.G.
        • Hersh C.P.
        • Washko G.R.
        COPDGene Investigators, Childhood-onset asthma in smokers. association between CT measures of airway size, lung function, and chronic airflow obstruction.
        Ann. Am. Thorac. Soc. 2014; 11: 1371-1378https://doi.org/10.1513/AnnalsATS.201403-095OC
        • Bui D.S.
        • Lodge C.J.
        • Burgess J.A.
        • Lowe A.J.
        • Perret J.
        • Bui M.Q.
        • Bowatte G.
        • Gurrin L.
        • Johns D.P.
        • Thompson B.R.
        • Hamilton G.S.
        • Frith P.A.
        • James A.L.
        • Thomas P.S.
        • Jarvis D.
        • Svanes C.
        • Russell M.
        • Morrison S.C.
        • Feather I.
        • Allen K.J.
        • Wood-Baker R.
        • Hopper J.
        • Giles G.G.
        • Abramson M.J.
        • Walters E.H.
        • Matheson M.C.
        • Dharmage S.C.
        Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life.
        Lancet Respir. Med. 2018; 6: 535-544https://doi.org/10.1016/S2213-2600(18)30100-0
        • Hayden L.P.
        • Hardin M.E.
        • Qiu W.
        • Lynch D.A.
        • Strand M.J.
        • Van Beek E.J.
        • Crapo J.D.
        • Silverman E.K.
        • Hersh C.P.
        Asthma is a risk factor for respiratory exacerbations without increased rate of lung function decline: five-year follow-up in adult smokers from the COPDGene study.
        Chest. 2018; 153: 368-377https://doi.org/10.1016/j.chest.2017.11.038
        • Thyagarajan B.
        • Jacobs D.R.
        • Apostol G.G.
        • Smith L.J.
        • Jensen R.L.
        • Crapo R.O.
        • Barr R.G.
        • Lewis C.E.
        • Williams O.D.
        Longitudinal association of body mass index with lung function: the CARDIA study.
        Respir. Res. 2008; 9: 31https://doi.org/10.1186/1465-9921-9-31
        • Peralta G.P.
        • Marcon A.
        • Carsin A.E.
        • Abramson M.J.
        • Accordini S.
        • Amaral A.F.
        • Antó J.M.
        • Bowatte G.
        • Burney P.
        • Corsico A.
        • Demoly P.
        • Dharmage S.
        • Forsberg B.
        • Fuertes E.
        • Garcia-Larsen V.
        • Gíslason T.
        • Gullón J.A.
        • Heinrich J.
        • Holm M.
        • Jarvis D.L.
        • Janson C.
        • Jogi R.
        • Johannessen A.
        • Leynaert B.
        • Rovira J.M.
        • Nowak D.
        • Probst-Hensch N.
        • Raherison C.
        • Sánchez-Ramos J.L.
        • Sigsgaard T.
        • Siroux V.
        • Squillacioti G.
        • Urrutia I.
        • Weyler J.
        • Zock J.P.
        • Garcia-Aymerich J.
        Body mass index and weight change are associated with adult lung function trajectories: the prospective ECRHS study.
        Thorax. 2020; 75: 313-320https://doi.org/10.1136/thoraxjnl-2019-213880
        • Kubota M.
        • Kobayashi H.
        • Quanjer P.H.
        • Omori H.
        • Tatsumi K.
        • Kanazawa M.
        Clinical Pulmonary Functions Committee of the Japanese Respiratory Society, Reference values for spirometry, including vital capacity, in Japanese adults calculated with the LMS method and compared with previous values.
        Respir. Investig. 2014; 52: 242-250https://doi.org/10.1016/j.resinv.2014.03.003
        • Çolak Y.
        • Afzal S.
        • Nordestgaard B.G.
        • Vestbo J.
        • Lange P.
        Prevalence, characteristics, and prognosis of early chronic obstructive pulmonary disease. The Copenhagen general population study.
        Am. J. Respir. Crit. Care Med. 2020; 201: 671-680https://doi.org/10.1164/rccm.201908-1644OC
        • Kim T.
        • Kim J.
        • Kim J.H.
        Characteristics and prevalence of early chronic obstructive pulmonary disease in a middle-aged population: results from a nationwide-representative sample.
        Int. J. Chronic Obstr. Pulm. Dis. 2021; 16: 3083-3091https://doi.org/10.2147/copd.S338118
        • Chen Y.
        • Horne S.L.
        • Dosman J.A.
        Body weight and weight gain related to pulmonary function decline in adults: a six year follow up study.
        Thorax. 1993; 48: 375-380https://doi.org/10.1136/thx.48.4.375
        • Pistelli F.
        • Bottai M.
        • Carrozzi L.
        • Pede F.D.
        • Baldacci S.
        • Maio S.
        • Brusasco V.
        • Pellegrino R.
        • Viegi G.
        Changes in obesity status and lung function decline in a general population sample.
        Respir. Med. 2008; 102: 674-680https://doi.org/10.1016/j.rmed.2007.12.022
        • Bottai M.
        • Pistelli F.
        • Di Pede F.
        • Carrozzi L.
        • Baldacci S.
        • Matteelli G.
        • Scognamiglio A.
        • Viegi G.
        Longitudinal changes of body mass index, spirometry and diffusion in a general population.
        Eur. Respir. J. 2002; 20: 665-673https://doi.org/10.1183/09031936.02.01282001
        • Sacco R.L.
        • Gan R.
        • Boden-Albala B.
        • Lin I.F.
        • Kargman D.E.
        • Hauser W.A.
        • Shea S.
        • Paik M.C.
        Leisure-time physical activity and ischemic stroke risk: the Northern Manhattan stroke study.
        Stroke. 1998; 29: 380-387https://doi.org/10.1161/01.str.29.2.380
        • Gordon N.F.
        • Gulanick M.
        • Costa F.
        • Fletcher G.
        • Franklin B.A.
        • Roth E.J.
        • Shephard T.
        Physical activity and exercise recommendations for stroke survivors: an American heart association scientific statement from the council on clinical cardiology, subcommittee on exercise, cardiac rehabilitation, and prevention; the council on cardiovascular nursing; the council on nutrition, physical activity, and metabolism; and the stroke council.
        Stroke. 2004; 35: 1230-1240https://doi.org/10.1161/01.Str.0000127303.19261.19
        • World Health Organization
        Global Recommendations on Physical Activity for Health. World Health Organization, Geneva2010: 7-57
        • Nocon M.
        • Hiemann T.
        • Müller-Riemenschneider F.
        • Thalau F.
        • Roll S.
        • Willich S.N.
        Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis.
        Eur. J. Cardiovasc. Prev. Rehabil. 2008; 15: 239-246https://doi.org/10.1097/HJR.0b013e3282f55e09
        • Tanabe N.
        • Sato S.
        • Oguma T.
        • Shima H.
        • Kubo T.
        • Kozawa S.
        • Koizumi K.
        • Sato A.
        • Togashi K.
        • Matsumoto H.
        • Hirai T.
        Influence of asthma onset on airway dimensions on ultra-high-resolution computed tomography in chronic obstructive pulmonary disease.
        J. Thorac. Imag. 2021; 36: 224-230https://doi.org/10.1097/RTI.0000000000000568
        • Tai A.
        • Tran H.
        • Roberts M.
        • Clarke N.
        • Wilson J.
        • Robertson C.F.
        The association between childhood asthma and adult chronic obstructive pulmonary disease.
        Thorax. 2014; 69: 805-810https://doi.org/10.1136/thoraxjnl-2013-204815
        • Miura S.
        • Iwamoto H.
        • Omori K.
        • Yamaguchi K.
        • Sakamoto S.
        • Horimasu Y.
        • Masuda T.
        • Miyamoto S.
        • Nakashima T.
        • Fujitaka K.
        • Hamada H.
        • Yokoyama A.
        • Hattori N.
        Accelerated decline in lung function in adults with a history of remitted childhood asthma.
        Eur. Respir. J. 2022; 592100305https://doi.org/10.1183/13993003.00305-2021
        • Dompeling E.
        • Van Schayck C.P.
        • Van Grunsven P.M.
        • Van Herwaarden C.L.
        • Akkermans R.
        • Molema J.
        • Folgering H.
        • Van Weel C.
        Slowing the deterioration of asthma and chronic obstructive pulmonary disease observed during bronchodilator therapy by adding inhaled corticosteroids. A 4-year prospective study.
        Ann. Intern. Med. 1993; 118: 770-778https://doi.org/10.7326/0003-4819-118-10-199305150-00003
        • Çolak Y.
        • Afzal S.
        • Nordestgaard B.G.
        • Lange P.
        • Vestbo J.
        Importance of early COPD in young adults for development of clinical COPD: findings from the Copenhagen general population study.
        Am. J. Respir. Crit. Care Med. 2021; 203: 1245-1256https://doi.org/10.1164/rccm.202003-0532OC
        • Martinez F.J.
        • Agusti A.
        • Celli B.R.
        • Han M.K.
        • Allinson J.P.
        • Bhatt S.P.
        • Calverley P.
        • Chotirmall S.H.
        • Chowdhury B.
        • Darken P.
        • Da Silva C.A.
        • Donaldson G.
        • Dorinsky P.
        • Dransfield M.
        • Faner R.
        • Halpin D.M.
        • Jones P.
        • Krishnan J.A.
        • Locantore N.
        • Martinez F.D.
        • Mullerova H.
        • Price D.
        • Rabe K.F.
        • Reisner C.
        • Singh D.
        • Vestbo J.
        • Vogelmeier C.F.
        • Wise R.A.
        • Tal-Singer R.
        • Wedzicha J.A.
        Treatment trials in young patients with chronic obstructive pulmonary disease and pre-chronic obstructive pulmonary disease patients: time to move forward.
        Am. J. Respir. Crit. Care Med. 2022; 205: 275-287https://doi.org/10.1164/rccm.202107-1663SO
        • Kohansal R.
        • Martinez-Camblor P.
        • Agustí A.
        • Buist A.S.
        • Mannino D.M.
        • Soriano J.B.
        The natural history of chronic airflow obstruction revisited: an analysis of the Framingham offspring cohort.
        Am. J. Respir. Crit. Care Med. 2009; 180: 3-10https://doi.org/10.1164/rccm.200901-0047OC
        • Fletcher C.
        • Peto R.
        The natural history of chronic airflow obstruction.
        Br. Med. J. 1977; 1: 1645-1648https://doi.org/10.1136/bmj.1.6077.1645