Advertisement

Obesity and asthma: A focused review

Published:October 14, 2022DOI:https://doi.org/10.1016/j.rmed.2022.107012

      Highlights

      • Obesity appears to worsen asthma severity and control.
      • Lung mechanics, inflammation, and metabolic disease are some mediating factors.
      • Interventions targeting weight loss appear to improve obesity-associated asthma.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Respiratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Taylor B.
        • Mannino D.
        • Brown C.
        • Crocker D.
        • Twum-Baah N.
        • Holguin F.
        Body mass index and asthma severity in the National Asthma Survey.
        Thorax. 2008; 63: 14-20https://doi.org/10.1136/thx.2007.082784
        • Beuther D.A.
        • Sutherland E.R.
        Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies.
        Am. J. Respir. Crit. Care Med. 2007; 175: 661-666https://doi.org/10.1164/rccm.200611-1717OC
        • Mosen D.M.
        • Schatz M.
        • Magid D.J.
        • Camargo C.A.
        The relationship between obesity and asthma severity and control in adults.
        J. Allergy Clin. Immunol. 2008; 122 (e6): 507-511https://doi.org/10.1016/j.jaci.2008.06.024
        • Finkelstein E.A.
        • Khavjou O.A.
        • Thompson H.
        • et al.
        Obesity and severe obesity forecasts through 2030.
        Am. J. Prev. Med. 2012; 42: 563-570https://doi.org/10.1016/j.amepre.2011.10.026
        • Centers for Disease Control. Most Recent National Asthma Data
        • Moore W.C.
        • Meyers D.A.
        • Wenzel S.E.
        • et al.
        Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program.
        Am. J. Respir. Crit. Care Med. 2010; 181: 315-323https://doi.org/10.1164/rccm.200906-0896OC
        • Sutherland E.R.
        • Goleva E.
        • King T.S.
        • et al.
        Cluster analysis of obesity and asthma phenotypes.
        PLoS One. 2012; 7e36631https://doi.org/10.1371/journal.pone.0036631
        • Lad N.
        • Murphy A.M.
        • Parenti C.
        • et al.
        Asthma and obesity: endotoxin another insult to add to injury?.
        Clin Sci Lond Engl 1979. 2021; 135: 2729-2748https://doi.org/10.1042/CS20210790
      1. Moitra S, Carsin AE, Abramson MJ, et al. Long-term effect of asthma on the development of obesity among adults: an international cohort study, ECRHS. Thorax. Published online April 27, 2022:thoraxjnl-2021-217867. doi:10.1136/thoraxjnl-2021-217867.

        • Sutherland E.R.
        • Goleva E.
        • Strand M.
        • Beuther D.A.
        • Leung D.Y.M.
        Body mass and glucocorticoid response in asthma.
        Am. J. Respir. Crit. Care Med. 2008; 178: 682-687https://doi.org/10.1164/rccm.200801-076OC
        • Peters-Golden M.
        • Swern A.
        • Bird S.S.
        • Hustad C.M.
        • Grant E.
        • Edelman J.M.
        Influence of body mass index on the response to asthma controller agents.
        Eur. Respir. J. 2006; 27: 495-503https://doi.org/10.1183/09031936.06.00077205
        • Camargo C.A.
        • Boulet L.P.
        • Sutherland E.R.
        • et al.
        Body mass index and response to asthma therapy: fluticasone propionate/salmeterol versus montelukast.
        J. Asthma Off. J. Assoc. Care Asthma. 2010; 47: 76-82https://doi.org/10.3109/02770900903338494
        • Thompson C.A.
        • Eslick S.R.
        • Berthon B.S.
        • Wood L.G.
        Asthma medication use in obese and healthy weight asthma: systematic review/meta-analysis.
        Eur. Respir. J. 2021; 572000612https://doi.org/10.1183/13993003.00612-2020
        • Larsson S.C.
        • Burgess S.
        Causal role of high body mass index in multiple chronic diseases: a systematic review and meta-analysis of Mendelian randomization studies.
        BMC Med. 2021; 19: 320https://doi.org/10.1186/s12916-021-02188-x
        • Liu Y.
        • Qu H.Q.
        • Qu J.
        • et al.
        Burden of rare coding variants reveals genetic heterogeneity between obese and non-obese asthma patients in the African American population.
        Respir. Res. 2022; 23: 116https://doi.org/10.1186/s12931-022-02039-0
        • Murphy A.
        • Tantisira K.G.
        • Soto-Quirós M.E.
        • et al.
        PRKCA: a positional candidate gene for body mass index and asthma.
        Am. J. Hum. Genet. 2009; 85: 87-96https://doi.org/10.1016/j.ajhg.2009.06.011
        • Tomita Y.
        • Fukutomi Y.
        • Irie M.
        • et al.
        Obesity, but not metabolic syndrome, as a risk factor for late-onset asthma in Japanese women.
        Allergol Int. Off J. Jpn Soc. Allergol. 2019; 68: 240-246https://doi.org/10.1016/j.alit.2018.10.003
        • Chen Z.
        • Salam M.T.
        • Alderete T.L.
        • et al.
        Effects of childhood asthma on the development of obesity among school-aged children.
        Am. J. Respir. Crit. Care Med. 2017; 195: 1181-1188https://doi.org/10.1164/rccm.201608-1691OC
        • Stratakis N.
        • Garcia E.
        • Chandran A.
        • et al.
        The role of childhood asthma in obesity development: a nationwide US multicohort study.
        Epidemiol. Camb Mass. 2022; 33: 131-140https://doi.org/10.1097/EDE.0000000000001421
        • Baan E.J.
        • de Roos E.W.
        • Engelkes M.
        • et al.
        Characterization of asthma by age of onset: a multi-database cohort study.
        J. Allergy Clin. Immunol. Pract. 2022; 10 (e8): 1825-1834https://doi.org/10.1016/j.jaip.2022.03.019
        • Miethe S.
        • Karsonova A.
        • Karaulov A.
        • Renz H.
        Obesity and asthma.
        J. Allergy Clin. Immunol. 2020; 146: 685-693https://doi.org/10.1016/j.jaci.2020.08.011
        • Mohan A.
        • Grace J.
        • Wang B.R.
        • Lugogo N.
        The effects of obesity in asthma.
        Curr. Allergy Asthma Rep. 2019; 19: 49https://doi.org/10.1007/s11882-019-0877-z
        • Dixon A.E.
        • Peters U.
        The effect of obesity on lung function.
        Expet Rev. Respir. Med. 2018; 12: 755-767https://doi.org/10.1080/17476348.2018.1506331
        • Forno E.
        • Han Y.Y.
        • Mullen J.
        • Celedón J.C.
        Overweight, obesity, and lung function in children and adults-A meta-analysis.
        J. Allergy Clin. Immunol. Pract. 2018; 6 (e10): 570-581https://doi.org/10.1016/j.jaip.2017.07.010
        • Bhatawadekar S.A.
        • Peters U.
        • Walsh R.R.
        • et al.
        Air trapping versus atelectasis in obesity: relationship to late-onset nonallergic asthma and aging.
        Ann. Am. Thorac. Soc. 2022; 19: 135-139https://doi.org/10.1513/AnnalsATS.202010-1317RL
        • Al-Alwan A.
        • Bates J.H.T.
        • Chapman D.G.
        • et al.
        The nonallergic asthma of obesity. A matter of distal lung compliance.
        Am. J. Respir. Crit. Care Med. 2014; 189: 1494-1502https://doi.org/10.1164/rccm.201401-0178OC
        • Forno E.
        • Weiner D.J.
        • Mullen J.
        • et al.
        Obesity and airway dysanapsis in children with and without asthma.
        Am. J. Respir. Crit. Care Med. 2017; 195: 314-323https://doi.org/10.1164/rccm.201605-1039OC
        • Bapat S.P.
        • Whitty C.
        • Mowery C.T.
        • et al.
        Obesity alters pathology and treatment response in inflammatory disease.
        Nature. 2022; 604: 337-342https://doi.org/10.1038/s41586-022-04536-0
        • van Veen I.H.
        • Ten Brinke A.
        • Sterk P.J.
        • Rabe K.F.
        • Bel E.H.
        Airway inflammation in obese and nonobese patients with difficult-to-treat asthma.
        Allergy. 2008; 63: 570-574https://doi.org/10.1111/j.1398-9995.2007.01597.x
        • Lugogo N.
        • Green C.L.
        • Agada N.
        • et al.
        Obesity's effect on asthma extends to diagnostic criteria.
        J. Allergy Clin. Immunol. 2018; 141: 1096-1104https://doi.org/10.1016/j.jaci.2017.04.047
        • Murphy V.E.
        • Jensen M.E.
        • Robijn A.L.
        • et al.
        How maternal BMI modifies the impact of personalized asthma management in pregnancy.
        J. Allergy Clin. Immunol. Pract. 2020; 8 (e3): 219-228https://doi.org/10.1016/j.jaip.2019.06.033
        • Komakula S.
        • Khatri S.
        • Mermis J.
        • et al.
        Body mass index is associated with reduced exhaled nitric oxide and higher exhaled 8-isoprostanes in asthmatics.
        Respir. Res. 2007; 8: 32https://doi.org/10.1186/1465-9921-8-32
        • Winnica D.
        • Corey C.
        • Mullett S.
        • et al.
        Bioenergetic differences in the airway epithelium of lean versus obese asthmatics are driven by nitric oxide and reflected in circulating platelets.
        Antioxidants Redox Signal. 2019; 31: 673-686https://doi.org/10.1089/ars.2018.7627
        • Winnica D.E.
        • Monzon A.
        • Ye S.
        • et al.
        Airway epithelial Paraoxonase-2 in obese asthma.
        PLoS One. 2022; 17e0261504https://doi.org/10.1371/journal.pone.0261504
        • Peters M.C.
        • McGrath K.W.
        • Hawkins G.A.
        • et al.
        Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts.
        Lancet Respir. Med. 2016; 4: 574-584https://doi.org/10.1016/S2213-2600(16)30048-0
        • Baltieri L.
        • Cazzo E.
        • Oliveira Modena D.A.
        • Gobato Rentel R.C.
        • Martins L.C.
        • Chaim E.A.
        Correlation between levels of adipokines and inflammatory mediators with spirometric parameters in individuals with obesity and symptoms of asthma: cross-sectional study.
        Pulmonology. 2022; 28: 105-112https://doi.org/10.1016/j.pulmoe.2020.04.003
        • Michalovich D.
        • Rodriguez-Perez N.
        • Smolinska S.
        • et al.
        Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients.
        Nat. Commun. 2019; 10: 5711https://doi.org/10.1038/s41467-019-13751-9
        • Wood L.G.
        • Li Q.
        • Scott H.A.
        • et al.
        Saturated fatty acids, obesity, and the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in asthmatic patients.
        J. Allergy Clin. Immunol. 2019; 143: 305-315https://doi.org/10.1016/j.jaci.2018.04.037
        • Pinkerton J.W.
        • Kim R.Y.
        • Brown A.C.
        • et al.
        Relationship between type 2 cytokine and inflammasome responses in obesity-associated asthma.
        J. Allergy Clin. Immunol. 2022; 149: 1270-1280https://doi.org/10.1016/j.jaci.2021.10.003
        • Pur Ozyigit L.
        • Aktas E.C.
        • Gelmez Y.M.
        • Ozturk A.B.
        • Gemicioglu B.
        • Deniz G.
        Functionality of natural killer cells in obese asthma phenotypes.
        Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2022; 31 (Published online March)https://doi.org/10.1111/cea.14136
        • Tejwani V.
        • McCormack A.
        • Suresh K.
        • et al.
        Dexamethasone-induced FKBP51 expression in CD4+ T-lymphocytes is uniquely associated with worse asthma control in obese children with asthma.
        Front. Immunol. 2021; 12744782https://doi.org/10.3389/fimmu.2021.744782
        • Cao T.B.T.
        • Moon J.Y.
        • Yoo H.J.
        • Ban G.Y.
        • Kim S.H.
        • Park H.S.
        Down-regulated surfactant protein B in obese asthmatics.
        Clin Exp Allergy J Br Soc Allergy Clin Immunol. Published online March. 2022; 16https://doi.org/10.1111/cea.14124
        • Rønnow S.R.
        • Sand J.M.B.
        • Staunstrup L.M.
        • et al.
        A serological biomarker of type I collagen degradation is related to a more severe, high neutrophilic, obese asthma subtype.
        Asthma Res. Pract. 2022; 8: 2https://doi.org/10.1186/s40733-022-00084-6
        • Sood A.
        • Shore S.A.
        Adiponectin, leptin, and resistin in asthma: basic mechanisms through population studies.
        J. Allergy. 2013; 2013785835https://doi.org/10.1155/2013/785835
        • Shore S.A.
        Obesity and asthma: lessons from animal models.
        J. Appl. Physiol. Bethesda Md 1985. 2007; 102: 516-528https://doi.org/10.1152/japplphysiol.00847.2006
        • Watanabe K.
        • Suzukawa M.
        • Arakawa S.
        • et al.
        Leptin enhances cytokine/chemokine production by normal lung fibroblasts by binding to leptin receptor.
        Allergol Int. Off J. Jpn Soc. Allergol. 2019; 68S: S3-S8https://doi.org/10.1016/j.alit.2019.04.002
        • Santos Coelho R.
        • Paula Castro Melo A.
        • Dos Santos Silva H.
        • et al.
        ADIPOQ and LEP variants on asthma and atopy: genetic association modified by overweight.
        Gene. 2021; 781145540https://doi.org/10.1016/j.gene.2021.145540
        • Jevnikar Z.
        • Östling J.
        • Ax E.
        • et al.
        Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation.
        J. Allergy Clin. Immunol. 2019; 143: 577-590https://doi.org/10.1016/j.jaci.2018.05.026
        • Rastogi D.
        • Fraser S.
        • Oh J.
        • et al.
        Inflammation, metabolic dysregulation, and pulmonary function among obese urban adolescents with asthma.
        Am. J. Respir. Crit. Care Med. 2015; 191: 149-160https://doi.org/10.1164/rccm.201409-1587OC
        • Vink N.M.
        • Postma D.S.
        • Schouten J.P.
        • Rosmalen J.G.M.
        • Boezen H.M.
        Gender differences in asthma development and remission during transition through puberty: the TRacking Adolescents' Individual Lives Survey (TRAILS) study.
        J. Allergy Clin. Immunol. 2010; 126 (e1-6): 498-504https://doi.org/10.1016/j.jaci.2010.06.018
        • Han Y.Y.
        • Forno E.
        • Celedón J.C.
        Sex steroid hormones and asthma in a nationwide study of U.S. Adults.
        Am. J. Respir. Crit. Care Med. 2020; 201: 158-166https://doi.org/10.1164/rccm.201905-0996OC
        • Scott J.A.
        • Maarsingh H.
        • Holguin F.
        • Grasemann H.
        Arginine therapy for lung diseases.
        Front. Pharmacol. 2021; 12627503https://doi.org/10.3389/fphar.2021.627503
        • Holguin F.
        • Comhair S.A.A.
        • Hazen S.L.
        • et al.
        An association between L-arginine/asymmetric dimethyl arginine balance, obesity, and the age of asthma onset phenotype.
        Am. J. Respir. Crit. Care Med. 2013; 187: 153-159https://doi.org/10.1164/rccm.201207-1270OC
        • Althoff M.D.
        • Ghincea A.
        • Wood L.G.
        • Holguin F.
        • Sharma S.
        Asthma and three colinear comorbidities: obesity, OSA, and GERD.
        J. Allergy Clin. Immunol. Pract. 2021; 9: 3877-3884https://doi.org/10.1016/j.jaip.2021.09.003
        • Paoletti G.
        • Melone G.
        • Ferri S.
        • et al.
        Gastroesophageal reflux and asthma: when, how, and why.
        Curr. Opin. Allergy Clin. Immunol. 2021; 21: 52-58https://doi.org/10.1097/ACI.0000000000000705
        • McLoughlin R.F.
        • McDonald V.M.
        The management of extrapulmonary comorbidities and treatable traits; obesity, physical inactivity, anxiety, and depression, in adults with asthma.
        Front Allergy. 2021; 2735030https://doi.org/10.3389/falgy.2021.735030
        • Stanescu S.
        • Kirby S.E.
        • Thomas M.
        • Yardley L.
        • Ainsworth B.
        A systematic review of psychological, physical health factors, and quality of life in adult asthma.
        NPJ Prim Care Respir Med. 2019; 29: 37https://doi.org/10.1038/s41533-019-0149-3
        • Freitas P.D.
        • Xavier R.F.
        • McDonald V.M.
        • et al.
        Identification of asthma phenotypes based on extrapulmonary treatable traits.
        Eur. Respir. J. 2021; 572000240https://doi.org/10.1183/13993003.00240-2020
        • Hiles S.A.
        • Gibson P.G.
        • Agusti A.
        • McDonald V.M.
        Treatable traits that predict health status and treatment response in airway disease.
        J. Allergy Clin. Immunol. Pract. 2021; 9 (e2): 1255-1264https://doi.org/10.1016/j.jaip.2020.09.046
        • Beyhan-Sagmen S.
        • Olgun Yıldızeli Ş.
        • Baykan H.
        • Özdemir M.
        • Ceyhan B.B.
        The effects of anxiety and depression on asthma control and their association with strategies for coping with stress and social acceptance.
        Rev. Fr. Allergol. 2020; 60: 401-406
        • Sundbom F.
        • Malinovschi A.
        • Lindberg E.
        • Almqvist C.
        • Janson C.
        Insomnia symptoms and asthma control-Interrelations and importance of comorbidities.
        Clin. Exp Allergy J. Br Soc. Allergy Clin. Immunol. 2020; 50: 170-177https://doi.org/10.1111/cea.13517
        • Brumpton B.M.
        • Camargo C.A.
        • Romundstad P.R.
        • Langhammer A.
        • Chen Y.
        • Mai X.M.
        Metabolic syndrome and incidence of asthma in adults: the HUNT study.
        Eur. Respir. J. 2013; 42: 1495-1502https://doi.org/10.1183/09031936.00046013
        • Wu T.D.
        • Brigham E.P.
        • Keet C.A.
        • Brown T.T.
        • Hansel N.N.
        • McCormack M.C.
        Association between prediabetes/diabetes and asthma exacerbations in a claims-based obese asthma cohort.
        J. Allergy Clin. Immunol. Pract. 2019; 7 (e5): 1868-1873https://doi.org/10.1016/j.jaip.2019.02.029
        • Rayner L.
        • McGovern A.
        • Creagh-Brown B.
        • Woodmansey C.
        • de Lusignan S.
        Type 2 diabetes and asthma: systematic review of the bidirectional relationship.
        Curr. Diabetes Rev. 2019; 15: 118-126https://doi.org/10.2174/1573399814666180711114859
        • Vinding R.K.
        • Stokholm J.
        • Chawes B.L.K.
        • Bisgaard H.
        Blood lipid levels associate with childhood asthma, airway obstruction, bronchial hyperresponsiveness, and aeroallergen sensitization.
        J. Allergy Clin. Immunol. 2016; 137 (e4): 68-74https://doi.org/10.1016/j.jaci.2015.05.033
        • Ferreira S.R.D.
        • Pessoa R.F.
        • Figueiredo I.A.D.
        • et al.
        Functional and morphologic dysfunctions in the airways of rats submitted to an experimental model of obesity-exacerbated asthma.
        Sci. Rep. 2022; 12: 9540https://doi.org/10.1038/s41598-022-13551-0
        • Goudarzi H.
        • Konno S.
        • Kimura H.
        • et al.
        Impact of abdominal visceral adiposity on adult asthma symptoms.
        J. Allergy Clin. Immunol. Pract. 2019; 7 (e5): 1222-1229https://doi.org/10.1016/j.jaip.2018.11.014
        • Proskocil B.J.
        • Calco G.N.
        • Nie Z.
        Insulin acutely increases agonist-induced airway smooth muscle contraction in humans and rats.
        Am. J. Physiol. Lung Cell Mol. Physiol. 2021; 320: L545-L556https://doi.org/10.1152/ajplung.00232.2020
        • Peters M.C.
        • Schiebler M.
        • Cardet J.C.
        • et al.
        The impact of insulin resistance on loss of lung function and response to treatment in asthma.
        Am. J. Respir Crit Care Med. Published online June. 2022; 10https://doi.org/10.1164/rccm.202112-2745OC
        • Cardet J.C.
        • Ash S.
        • Kusa T.
        • Camargo C.A.
        • Israel E.
        Insulin resistance modifies the association between obesity and current asthma in adults.
        Eur. Respir. J. 2016; 48: 403-410https://doi.org/10.1183/13993003.00246-2016
        • Huang Y.J.
        • Nelson C.E.
        • Brodie E.L.
        • et al.
        Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma.
        J. Allergy Clin. Immunol. 2011; 127 (e1-3): 372-381https://doi.org/10.1016/j.jaci.2010.10.048
        • Taylor S.L.
        • Leong L.E.X.
        • Choo J.M.
        • et al.
        Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology.
        J. Allergy Clin. Immunol. 2018; 141 (e15): 94-103https://doi.org/10.1016/j.jaci.2017.03.044
        • Khan M.J.
        • Gerasimidis K.
        • Edwards C.A.
        • Shaikh M.G.
        Role of gut microbiota in the aetiology of obesity: proposed mechanisms and review of the literature.
        J Obes. 2016; 20167353642https://doi.org/10.1155/2016/7353642
        • Tashiro H.
        • Cho Y.
        • Kasahara D.I.
        • et al.
        Microbiota contribute to obesity-related increases in the pulmonary response to ozone.
        Am. J. Respir. Cell Mol. Biol. 2019; 61: 702-712https://doi.org/10.1165/rcmb.2019-0144OC
        • Cho Y.
        • Abu-Ali G.
        • Tashiro H.
        • et al.
        Sex differences in pulmonary responses to ozone in mice. Role of the microbiome.
        Am. J. Respir. Cell Mol. Biol. 2019; 60: 198-208https://doi.org/10.1165/rcmb.2018-0099OC
        • Brown T.A.
        • Tashiro H.
        • Kasahara D.I.
        • Cho Y.
        • Shore S.A.
        Early life microbiome perturbation alters pulmonary responses to ozone in male mice.
        Phys. Rep. 2020; 8e14290https://doi.org/10.14814/phy2.14290
        • Kasahara D.I.
        • Wilkinson J.E.
        • Cho Y.
        • Cardoso A.P.
        • Huttenhower C.
        • Shore S.A.
        The interleukin-33 receptor contributes to pulmonary responses to ozone in male mice: role of the microbiome.
        Respir. Res. 2019; 20: 197https://doi.org/10.1186/s12931-019-1168-x
        • Lee J.
        • Lee S.H.
        • Gu G.J.
        • et al.
        Alterations of lung microbial communities in obese allergic asthma and metabolic potential.
        PLoS One. 2021; 16e0256848https://doi.org/10.1371/journal.pone.0256848
        • Shore S.A.
        • Rivera-Sanchez Y.M.
        • Schwartzman I.N.
        • Johnston R.A.
        Responses to ozone are increased in obese mice.
        J. Appl. Physiol. Bethesda Md 1985. 2003; 95: 938-945https://doi.org/10.1152/japplphysiol.00336.2003
        • Wu T.D.
        • Brigham E.P.
        • Peng R.
        • et al.
        Overweight/obesity enhances associations between secondhand smoke exposure and asthma morbidity in children.
        J. Allergy Clin. Immunol. Pract. 2018; 6 (e5): 2157-2159https://doi.org/10.1016/j.jaip.2018.04.020
        • Lu K.D.
        • Breysse P.N.
        • Diette G.B.
        • et al.
        Being overweight increases susceptibility to indoor pollutants among urban children with asthma.
        J. Allergy Clin. Immunol. 2013; 131 (1023.e1-3): 1017-1023https://doi.org/10.1016/j.jaci.2012.12.1570
        • Permaul P.
        • Gaffin J.M.
        • Petty C.R.
        • et al.
        Obesity may enhance the adverse effects of NO2 exposure in urban schools on asthma symptoms in children.
        J. Allergy Clin. Immunol. 2020; 146 (e2): 813-820https://doi.org/10.1016/j.jaci.2020.03.003
        • Afshar-Mohajer N.
        • Wu T.D.
        • Shade R.
        • et al.
        Obesity, tidal volume, and pulmonary deposition of fine particulate matter in children with asthma.
        Eur. Respir. J. 2022; 592100209https://doi.org/10.1183/13993003.00209-2021
        • Hancu A.
        • Mihaltan F.
        • Radulian G.
        Asthma and ultra-processed food.
        Maedica. 2019; 14: 402-407https://doi.org/10.26574/maedica.2019.14.4.402
        • Chen X.
        • Zhang Z.
        • Yang H.
        • et al.
        Consumption of ultra-processed foods and health outcomes: a systematic review of epidemiological studies.
        Nutr. J. 2020; 19: 86https://doi.org/10.1186/s12937-020-00604-1
        • Alwarith J.
        • Kahleova H.
        • Crosby L.
        • et al.
        The role of nutrition in asthma prevention and treatment.
        Nutr. Rev. 2020; 78: 928-938https://doi.org/10.1093/nutrit/nuaa005
        • Park S.
        • Akinbami L.J.
        • McGuire L.C.
        • Blanck H.M.
        Association of sugar-sweetened beverage intake frequency and asthma among U.S. adults, 2013.
        Prev. Med. 2016; 91: 58-61https://doi.org/10.1016/j.ypmed.2016.08.004
        • DeChristopher L.R.
        • Tucker K.L.
        Excess free fructose, high-fructose corn syrup and adult asthma: the Framingham Offspring Cohort.
        Br. J. Nutr. 2018; 119: 1157-1167https://doi.org/10.1017/S0007114518000417
        • Saeed M.A.
        • Gribben K.C.
        • Alam M.
        • Lyden E.R.
        • Hanson C.K.
        • LeVan T.D.
        Association of dietary fiber on asthma, respiratory symptoms, and inflammation in the adult national health and nutrition examination Survey population.
        Ann. Am. Thorac. Soc. 2020; 17: 1062-1068https://doi.org/10.1513/AnnalsATS.201910-776OC
        • Hosseini B.
        • Berthon B.S.
        • Wark P.
        • Wood L.G.
        Effects of fruit and vegetable consumption on risk of asthma, Wheezing and immune responses: a systematic review and meta-analysis.
        Nutrients. 2017; 9: E341https://doi.org/10.3390/nu9040341
        • Stoodley I.
        • Garg M.
        • Scott H.
        • Macdonald-Wicks L.
        • Berthon B.
        • Wood L.
        Higher omega-3 index is associated with better asthma control and lower medication dose: a cross-sectional study.
        Nutrients. 2019; 12: E74https://doi.org/10.3390/nu12010074
        • Scott H.A.
        • Jensen M.E.
        • Wood L.G.
        Dietary interventions in asthma.
        Curr. Pharmaceut. Des. 2014; 20: 1003-1010https://doi.org/10.2174/13816128113190990421
        • Collins S.É.
        • Phillips D.B.
        • Brotto A.R.
        • Rampuri Z.H.
        • Stickland M.K.
        Ventilatory efficiency in athletes, asthma and obesity.
        Eur Respir Rev. Off J. Eur Respir Soc. 2021; 30200206https://doi.org/10.1183/16000617.0206-2020
        • Cordova-Rivera L.
        • Gibson P.G.
        • Gardiner P.A.
        • McDonald V.M.
        A systematic review of associations of physical activity and sedentary time with asthma outcomes.
        J. Allergy Clin. Immunol. Pract. 2018; 6 (e2): 1968-1981https://doi.org/10.1016/j.jaip.2018.02.027
        • Cordova-Rivera L.
        • Gibson P.G.
        • Gardiner P.A.
        • Powell H.
        • McDonald V.M.
        Physical activity and exercise capacity in severe asthma: key clinical associations.
        J. Allergy Clin. Immunol. Pract. 2018; 6: 814-822https://doi.org/10.1016/j.jaip.2017.09.022
        • Freitas P.D.
        • Passos N.F.P.
        • Carvalho-Pinto R.M.
        • et al.
        A behavior change intervention aimed at increasing physical activity improves clinical control in adults with asthma: a randomized controlled trial.
        Chest. 2021; 159: 46-57https://doi.org/10.1016/j.chest.2020.08.2113
        • Türk Y.
        • Theel W.
        • van Huisstede A.
        • et al.
        Short-term and long-term effect of a high-intensity pulmonary rehabilitation programme in obese patients with asthma: a randomised controlled trial.
        Eur. Respir. J. 2020; 561901820https://doi.org/10.1183/13993003.01820-2019
        • Stenius-Aarniala B.
        • Poussa T.
        • Kvarnström J.
        • Grönlund E.L.
        • Ylikahri M.
        • Mustajoki P.
        Immediate and long term effects of weight reduction in obese people with asthma: randomised controlled study.
        BMJ. 2000; 320: 827-832https://doi.org/10.1136/bmj.320.7238.827
        • Okoniewski W.
        • Lu K.D.
        • Forno E.
        Weight loss for children and adults with obesity and asthma. A systematic review of randomized controlled trials.
        Ann. Am. Thorac. Soc. 2019; 16: 613-625https://doi.org/10.1513/AnnalsATS.201810-651SR
        • Scott H.A.
        • Gibson P.G.
        • Garg M.L.
        • et al.
        Dietary restriction and exercise improve airway inflammation and clinical outcomes in overweight and obese asthma: a randomized trial.
        Clin. Exp Allergy J. Br Soc. Allergy Clin. Immunol. 2013; 43: 36-49https://doi.org/10.1111/cea.12004
        • Adeniyi F.B.
        • Young T.
        Weight loss interventions for chronic asthma.
        Cochrane Database Syst. Rev. 2012; 7: CD009339https://doi.org/10.1002/14651858.CD009339.pub2
        • Ü Özbey
        • Balaban S.
        • Sözener Z.Ç.
        • Uçar A.
        • Mungan D.
        • Mısırlıgil Z.
        The effects of diet-induced weight loss on asthma control and quality of life in obese adults with asthma: a randomized controlled trial.
        J. Asthma Off. J. Assoc. Care Asthma. 2020; 57: 618-626https://doi.org/10.1080/02770903.2019.1590594
        • Freitas P.D.
        • Ferreira P.G.
        • Silva A.G.
        • et al.
        The role of exercise in a weight-loss program on clinical control in obese adults with asthma. A randomized controlled trial.
        Am. J. Respir. Crit. Care Med. 2017; 195: 32-42https://doi.org/10.1164/rccm.201603-0446OC
        • Johnson O.
        • Gerald L.B.
        • Harvey J.
        • et al.
        An online weight loss intervention for people with obesity and poorly controlled asthma.
        J. Allergy Clin. Immunol. Pract. 2022; 10 (e3): 1577-1586https://doi.org/10.1016/j.jaip.2022.02.040
        • Dixon A.E.
        • Pratley R.E.
        • Forgione P.M.
        • et al.
        Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control, and inflammation.
        J. Allergy Clin. Immunol. 2011; 128 (e1-2): 508-515https://doi.org/10.1016/j.jaci.2011.06.009
        • van Huisstede A.
        • Rudolphus A.
        • Castro Cabezas M.
        • et al.
        Effect of bariatric surgery on asthma control, lung function and bronchial and systemic inflammation in morbidly obese subjects with asthma.
        Thorax. 2015; 70: 659-667https://doi.org/10.1136/thoraxjnl-2014-206712
        • Santos L.M.
        • Ramos B.
        • Almeida J.
        • Loureiro C.C.
        • Cordeiro C.R.
        The impact of weight loss beyond lung function: benefit with respect to asthma outcomes.
        Pulmonology. 2019; 25: 313-319https://doi.org/10.1016/j.pulmoe.2019.07.007
        • Hasegawa K.
        • Tsugawa Y.
        • Chang Y.
        • Camargo C.A.
        Risk of an asthma exacerbation after bariatric surgery in adults.
        J. Allergy Clin. Immunol. 2015; 136 (e8): 288-294https://doi.org/10.1016/j.jaci.2014.12.1931
        • Upala S.
        • Thavaraputta S.
        • Sanguankeo A.
        Improvement in pulmonary function in asthmatic patients after bariatric surgery: a systematic review and meta-analysis.
        Surg Obes Relat Dis. Off. J. Am. Soc. Bariatr Surg. 2019; 15: 794-803https://doi.org/10.1016/j.soard.2018.12.018
        • Baltieri L.
        • Cazzo E.
        • de Souza A.L.
        • et al.
        Influence of weight loss on pulmonary function and levels of adipokines among asthmatic individuals with obesity: one-year follow-up.
        Respir. Med. 2018; 145: 48-56https://doi.org/10.1016/j.rmed.2018.10.017
        • Guerron A.D.
        • Ortega C.B.
        • Lee H.J.
        • Davalos G.
        • Ingram J.
        • Portenier D.
        Asthma medication usage is significantly reduced following bariatric surgery.
        Surg. Endosc. 2019; 33: 1967-1975https://doi.org/10.1007/s00464-018-6500-x
        • Forno E.
        • Zhang P.
        • Nouraie M.
        • et al.
        The impact of bariatric surgery on asthma control differs among obese individuals with reported prior or current asthma, with or without metabolic syndrome.
        PLoS One. 2019; 14e0214730https://doi.org/10.1371/journal.pone.0214730
        • Menzies-Gow A.
        • Corren J.
        • Bourdin A.
        • et al.
        Tezepelumab in adults and adolescents with severe, uncontrolled asthma.
        N. Engl. J. Med. 2021; 384: 1800-1809https://doi.org/10.1056/NEJMoa2034975
        • Gibson P.G.
        • Yang I.A.
        • Upham J.W.
        • et al.
        Efficacy of azithromycin in severe asthma from the AMAZES randomised trial.
        ERJ Open Res. 2019; 5 (00056-02019)https://doi.org/10.1183/23120541.00056-2019
        • Foer D.
        • Beeler P.E.
        • Cui J.
        • Karlson E.W.
        • Bates D.W.
        • Cahill K.N.
        Asthma exacerbations in patients with type 2 diabetes and asthma on glucagon-like peptide-1 receptor agonists.
        Am. J. Respir. Crit. Care Med. 2021; 203: 831-840https://doi.org/10.1164/rccm.202004-0993OC
        • Jastreboff A.M.
        • Aronne L.J.
        • Ahmad N.N.
        • et al.
        Tirzepatide once weekly for the treatment of obesity.
        N. Engl. J. Med. 2022; 387: 205-216https://doi.org/10.1056/NEJMoa2206038
        • Gu C.
        • Loube J.
        • Lee R.
        • et al.
        Metformin alleviates airway hyperresponsiveness in a mouse model of diet-induced obesity.
        Front. Physiol. 2022; 13883275https://doi.org/10.3389/fphys.2022.883275
        • Calixto M.C.
        • Lintomen L.
        • André D.M.
        • et al.
        Metformin attenuates the exacerbation of the allergic eosinophilic inflammation in high fat-diet-induced obesity in mice.
        PLoS One. 2013; 8e76786https://doi.org/10.1371/journal.pone.0076786
        • Sunata K.
        • Kabata H.
        • Kuno T.
        • et al.
        The effect of statins for asthma. A systematic review and meta-analysis.
        J. Asthma Off. J. Assoc. Care Asthma. 2022; 59: 801-810https://doi.org/10.1080/02770903.2021.1879850
        • Holguin F.
        • Grasemann H.
        • Sharma S.
        • et al.
        L-Citrulline increases nitric oxide and improves control in obese asthmatics.
        JCI Insight. 2019; 4131733https://doi.org/10.1172/jci.insight.131733
        • Lang J.E.
        • Mougey E.B.
        • Hossain M.J.
        • et al.
        Fish oil supplementation in overweight/obese patients with uncontrolled asthma. A randomized trial.
        Ann. Am. Thorac. Soc. 2019; 16: 554-562https://doi.org/10.1513/AnnalsATS.201807-446OC
        • Tashiro H.
        • Shore S.A.
        The gut microbiome and ozone-induced airway hyperresponsiveness. Mechanisms and therapeutic prospects.
        Am. J. Respir. Cell Mol. Biol. 2021; 64: 283-291https://doi.org/10.1165/rcmb.2020-0288TR