Advertisement

Interactions between microbiome and underlying mechanisms in asthma

  • Purevsuren Losol
    Affiliations
    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea

    Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea

    Medical Research Center, Seoul National University, Seoul, South Korea

    Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
    Search for articles by this author
  • Milena Sokolowska
    Affiliations
    Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland

    Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
    Search for articles by this author
  • Yoon-Seok Chang
    Correspondence
    Corresponding author. Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam, 13620, South Korea.
    Affiliations
    Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea

    Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea

    Medical Research Center, Seoul National University, Seoul, South Korea
    Search for articles by this author
Published:January 10, 2023DOI:https://doi.org/10.1016/j.rmed.2023.107118

      Abstract

      Microbiome primes host innate immunity in utero and play fundamental roles in the development, training, and function of the immune system throughout the life. Interplay between the microbiome and immune system maintains mucosal homeostasis, while alterations of microbial community dysregulate immune responses, leading to distinct phenotypic features of immune-mediated diseases including asthma. Microbial imbalance within the mucosal environments, including upper and lower airways, skin, and gut, has consistently been observed in asthma patients and linked to increased asthma exacerbations and severity. Microbiome research has increased to uncover hidden microbial members, function, and immunoregulatory effects of bacterial metabolites within the mucosa. This review provides an overview of environmental and genetic factors that modulate the composition and function of the microbiome, and the impacts of microbiome metabolites and skin microbiota on immune regulation in asthma.

      Graphical abstract

      Keywords

      Abbreviations:

      AhR (aryl hydrocarbon receptor), CD4 (cluster of differentiation 4), GPCR (G protein-coupled receptor), GWAS (genome-wide association studies), HDAC (histone deacetylases), IgE (immunoglobulin E), IL (interleukin), ILC2 (type 2 innate lymphoid cell), PM (particulate matter), RV (rhinovirus), RCV (respiratory syncytial virus), SCFA (short chain fatty acid), Th (T helper), Treg (regulatory T cell)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Respiratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Strachan D.P.
        Hay fever, hygiene, and household size.
        BMJ. 1989; 299: 1259-1260
        • Losol P.
        • Choi J.P.
        • Kim S.H.
        • Chang Y.S.
        The role of upper airway microbiome in the development of adult asthma.
        Immune Netw. 2021; 21: e19
        • Wang Z.
        • Lai Z.
        • Zhang X.
        • Huang P.
        • Xie J.
        • Jiang Q.
        • Zhang Q.
        • Chung K.F.
        Altered gut microbiome compositions are associated with the severity of asthma.
        J. Thorac. Dis. 2021; 13: 4322-4338
        • Ege M.J.
        • Mayer M.
        • Normand A.C.
        • Genuneit J.
        • Cookson W.O.
        • Braun-Fahrlander C.
        • Heederik D.
        • Piarroux R.
        • von Mutius E.
        • Group G.T.S.
        Exposure to environmental microorganisms and childhood asthma.
        N. Engl. J. Med. 2011; 364: 701-709
        • Lee J.J.
        • Kim S.H.
        • Lee M.J.
        • Kim B.K.
        • Song W.J.
        • Park H.W.
        • Cho S.H.
        • Hong S.J.
        • Chang Y.S.
        • Kim B.S.
        Different upper airway microbiome and their functional genes associated with asthma in young adults and elderly individuals.
        Allergy. 2019; 74: 709-719
        • Zhou Y.
        • Jackson D.
        • Bacharier L.B.
        • Mauger D.
        • Boushey H.
        • Castro M.
        • Durack J.
        • Huang Y.
        • Lemanske Jr., R.F.
        • Storch G.A.
        • et al.
        The upper-airway microbiota and loss of asthma control among asthmatic children.
        Nat. Commun. 2019; 10: 5714
        • Mishra A.
        • Lai G.C.
        • Yao L.J.
        • Aung T.T.
        • Shental N.
        • Rotter-Maskowitz A.
        • Shepherdson E.
        • Singh G.S.N.
        • Pai R.
        • Shanti A.
        • et al.
        Microbial exposure during early human development primes fetal immune cells.
        Cell. 2021; 184 (e3320): 3394-3409
        • Losol P.
        • Park H.S.
        • Song W.J.
        • Hwang Y.K.
        • Kim S.H.
        • Holloway J.W.
        • Chang Y.S.
        Association of upper airway bacterial microbiota and asthma: systematic review.
        Asia Pac. Allergy. 2022; 12: e32
        • Barcik W.
        • Boutin R.C.T.
        • Sokolowska M.
        • Finlay B.B.
        The role of lung and gut microbiota in the pathology of asthma.
        Immunity. 2020; 52: 241-255
        • Reyman M.
        • van Houten M.A.
        • van Baarle D.
        • Bosch A.
        • Man W.H.
        • Chu M.
        • Arp K.
        • Watson R.L.
        • Sanders E.A.M.
        • Fuentes S.
        • et al.
        Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life.
        Nat. Commun. 2019; 10: 4997
        • Stokholm J.
        • Thorsen J.
        • Blaser M.J.
        • Rasmussen M.A.
        • Hjelmso M.
        • Shah S.
        • Christensen E.D.
        • Chawes B.L.
        • Bonnelykke K.
        • Brix S.
        • et al.
        Delivery mode and gut microbial changes correlate with an increased risk of childhood asthma.
        Sci. Transl. Med. 2020; 12
        • McCauley K.E.
        • Rackaityte E.
        • LaMere B.
        • Fadrosh D.W.
        • Fujimura K.E.
        • Panzer A.R.
        • Lin D.L.
        • Lynch K.V.
        • Halkias J.
        • Mendoza V.F.
        • et al.
        Heritable vaginal bacteria influence immune tolerance and relate to early-life markers of allergic sensitization in infancy.
        Cell Rep. Med. 2022; 3100713
        • Losol P.
        • Mercken L.P.
        • Fisk H.L.
        • Calder P.C.
        • Holloway J.W.
        • Torrens C.
        Maternal high-fat diet in mice alters immune regulation and lung function in the offspring.
        Br. J. Nutr. 2021; 126: 844-852
        • Losol P.
        • Rezwan F.I.
        • Patil V.K.
        • Venter C.
        • Ewart S.
        • Zhang H.
        • Arshad S.H.
        • Karmaus W.
        • Holloway J.W.
        Effect of gestational oily fish intake on the risk of allergy in children may be influenced by FADS1/2, ELOVL5 expression and DNA methylation.
        Genes Nutr. 2019; 14: 20
        • Venter C.
        • Greenhawt M.
        • Meyer R.W.
        • Agostoni C.
        • Reese I.
        • du Toit G.
        • Feeney M.
        • Maslin K.
        • Nwaru B.I.
        • Roduit C.
        • et al.
        EAACI position paper on diet diversity in pregnancy, infancy and childhood: novel concepts and implications for studies in allergy and asthma.
        Allergy. 2020; 75: 497-523
        • Acevedo N.
        • Alashkar Alhamwe B.
        • Caraballo L.
        • Ding M.
        • Ferrante A.
        • Garn H.
        • Garssen J.
        • Hii C.S.
        • Irvine J.
        • Llinas-Caballero K.
        • et al.
        Perinatal and early-life nutrition, epigenetics, and allergy.
        Nutrients. 2021; 13
        • Azad M.B.
        • Vehling L.
        • Lu Z.
        • Dai D.
        • Subbarao P.
        • Becker A.B.
        • Mandhane P.J.
        • Turvey S.E.
        • Lefebvre D.L.
        • Sears M.R.
        • et al.
        Breastfeeding, maternal asthma and wheezing in the first year of life: a longitudinal birth cohort study.
        Eur. Respir. J. 2017; 49
        • Rosas-Salazar C.
        • Shilts M.H.
        • Tang Z.Z.
        • Hong Q.
        • Turi K.N.
        • Snyder B.M.
        • Wiggins D.A.
        • Lynch C.E.
        • Gebretsadik T.
        • Peebles Jr., R.S.
        • et al.
        Exclusive breast-feeding, the early-life microbiome and immune response, and common childhood respiratory illnesses.
        J. Allergy Clin. Immunol. 2022;
        • Henrick B.M.
        • Rodriguez L.
        • Lakshmikanth T.
        • Pou C.
        • Henckel E.
        • Arzoomand A.
        • Olin A.
        • Wang J.
        • Mikes J.
        • Tan Z.
        • et al.
        Bifidobacteria-mediated immune system imprinting early in life.
        Cell. 2021; 184 (e3811): 3884-3898
        • Braun-Fahrlander C.
        • Riedler J.
        • Herz U.
        • Eder W.
        • Waser M.
        • Grize L.
        • Maisch S.
        • Carr D.
        • Gerlach F.
        • Bufe A.
        • et al.
        Environmental exposure to endotoxin and its relation to asthma in school-age children.
        N. Engl. J. Med. 2002; 347: 869-877
        • Schuijs M.J.
        • Willart M.A.
        • Vergote K.
        • Gras D.
        • Deswarte K.
        • Ege M.J.
        • Madeira F.B.
        • Beyaert R.
        • van Loo G.
        • Bracher F.
        • et al.
        Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells.
        Science. 2015; 349: 1106-1110
        • Lee M.K.
        • Wyss A.B.
        • Carnes M.U.
        • Richards M.
        • Parks C.G.
        • Beane Freeman L.E.
        • Thorne P.S.
        • Umbach D.M.
        • Azcarate-Peril M.A.
        • Peddada S.D.
        • et al.
        House dust microbiota in relation to adult asthma and atopy in a US farming population.
        J. Allergy Clin. Immunol. 2021; 147: 910-920
        • Depner M.
        • Taft D.H.
        • Kirjavainen P.V.
        • Kalanetra K.M.
        • Karvonen A.M.
        • Peschel S.
        • Schmausser-Hechfellner E.
        • Roduit C.
        • Frei R.
        • Lauener R.
        • et al.
        Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma.
        Nat. Med. 2020; 26: 1766-1775
        • Campbell B.
        • Raherison C.
        • Lodge C.J.
        • Lowe A.J.
        • Gislason T.
        • Heinrich J.
        • Sunyer J.
        • Gomez Real F.
        • Norback D.
        • Matheson M.C.
        • et al.
        The effects of growing up on a farm on adult lung function and allergic phenotypes: an international population-based study.
        Thorax. 2017; 72: 236-244
        • Frei R.
        • Heye K.
        • Roduit C.
        Environmental influences on childhood allergies and asthma - the Farm effect.
        Pediatr. Allergy Immunol. 2022; 33e13807
        • Pinot de Moira A.
        • Strandberg-Larsen K.
        • Bishop T.
        • Pedersen M.
        • Avraam D.
        • Cadman T.
        • Calas L.
        • Casas M.
        • de Lauzon Guillain B.
        • Elhakeem A.
        • et al.
        Associations of early-life pet ownership with asthma and allergic sensitization: a meta-analysis of more than 77,000 children from the EU Child Cohort Network.
        J. Allergy Clin. Immunol. 2022; 150: 82-92
        • Laursen M.F.
        • Zachariassen G.
        • Bahl M.I.
        • Bergstrom A.
        • Host A.
        • Michaelsen K.F.
        • Licht T.R.
        Having older siblings is associated with gut microbiota development during early childhood.
        BMC Microbiol. 2015; 15: 154
        • Tun H.M.
        • Konya T.
        • Takaro T.K.
        • Brook J.R.
        • Chari R.
        • Field C.J.
        • Guttman D.S.
        • Becker A.B.
        • Mandhane P.J.
        • Turvey S.E.
        • et al.
        Exposure to household furry pets influences the gut microbiota of infant at 3-4 months following various birth scenarios.
        Microbiome. 2017; 5: 40
        • Fujimura K.E.
        • Demoor T.
        • Rauch M.
        • Faruqi A.A.
        • Jang S.
        • Johnson C.C.
        • Boushey H.A.
        • Zoratti E.
        • Ownby D.
        • Lukacs N.W.
        • et al.
        House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection.
        Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 805-810
        • Christensen E.D.
        • Hjelmso M.H.
        • Thorsen J.
        • Shah S.
        • Redgwell T.
        • Poulsen C.E.
        • Trivedi U.
        • Russel J.
        • Gupta S.
        • Chawes B.L.
        • et al.
        The developing airway and gut microbiota in early life is influenced by age of older siblings.
        Microbiome. 2022; 10: 106
        • Tavalire H.F.
        • Christie D.M.
        • Leve L.D.
        • Ting N.
        • Cresko W.A.
        • Bohannan B.J.M.
        Shared environment and genetics shape the gut microbiome after infant adoption.
        mBio. 2021; 12
        • Lehtimaki J.
        • Karkman A.
        • Laatikainen T.
        • Paalanen L.
        • von Hertzen L.
        • Haahtela T.
        • Hanski I.
        • Ruokolainen L.
        Patterns in the skin microbiota differ in children and teenagers between rural and urban environments.
        Sci. Rep. 2017; 745651
        • Zoetendal E.G.
        • Plugge C.M.
        • Akkermans A.D.L.
        • de Vos W.M.
        Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces.
        Int. J. Syst. Evol. Microbiol. 2003; 53: 211-215
        • Pawankar R.
        • Wang J.Y.
        • Wang I.J.
        • Thien F.
        • Chang Y.S.
        • Latiff A.H.A.
        • Fujisawa T.
        • Zhang L.
        Thong BY, Chatchatee P et al: Asia Pacific Association of Allergy Asthma and Clinical Immunology White Paper 2020 on climate change, air pollution, and biodiversity in Asia-Pacific and impact on allergic diseases.
        Asia Pac. Allergy. 2020; 10: e11
        • Benka-Coker W.
        • Hoskovec L.
        • Severson R.
        • Balmes J.
        • Wilson A.
        • Magzamen S.
        The joint effect of ambient air pollution and agricultural pesticide exposures on lung function among children with asthma.
        Environ. Res. 2020; 190109903
        • Auerbach A.
        • Hernandez M.L.
        The effect of environmental oxidative stress on airway inflammation.
        Curr. Opin. Allergy Clin. Immunol. 2012; 12: 133-139
        • Michaudel C.
        • Mackowiak C.
        • Maillet I.
        • Fauconnier L.
        • Akdis C.A.
        • Sokolowska M.
        • Dreher A.
        • Tan H.T.
        • Quesniaux V.F.
        • Ryffel B.
        • et al.
        Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33.
        J. Allergy Clin. Immunol. 2018; 142: 942-958
        • Aghapour M.
        • Ubags N.D.
        • Bruder D.
        • Hiemstra P.S.
        • Sidhaye V.
        • Rezaee F.
        • Heijink I.H.
        Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD.
        Eur. Respir. Rev. 2022; 31
        • Dickson R.P.
        • Erb-Downward J.R.
        • Martinez F.J.
        • Huffnagle G.B.
        The microbiome and the respiratory tract.
        Annu. Rev. Physiol. 2016; 78: 481-504
        • Mariani J.
        • Favero C.
        • Spinazze A.
        • Cavallo D.M.
        • Carugno M.
        • Motta V.
        • Bonzini M.
        • Cattaneo A.
        • Pesatori A.C.
        • Bollati V.
        Short-term particulate matter exposure influences nasal microbiota in a population of healthy subjects.
        Environ. Res. 2018; 162: 119-126
        • Niemeier-Walsh C.
        • Ryan P.H.
        • Meller J.
        • Ollberding N.J.
        • Adhikari A.
        • Reponen T.
        Exposure to traffic-related air pollution and bacterial diversity in the lower respiratory tract of children.
        PLoS One. 2021; 16e0244341
        • Zheng P.
        • Zhang B.
        • Zhang K.
        • Lv X.
        • Wang Q.
        • Bai X.
        The impact of air pollution on intestinal microbiome of asthmatic children: a panel study.
        BioMed Res. Int. 2020; 20205753427
        • Leite G.
        • Barlow G.M.
        • Hosseini A.
        • Parodi G.
        • Pimentel M.L.
        • Wang J.
        • Fiorentino A.
        • Rezaie A.
        • Pimentel M.
        • Mathur R.
        Smoking has disruptive effects on the small bowel luminal microbiome.
        Sci. Rep. 2022; 12: 6231
        • Losol P.
        • Kim S.H.
        • Ahn S.
        • Lee S.
        • Choi J.P.
        • Kim Y.H.
        • Hong S.J.
        • Kim B.S.
        • Chang Y.S.
        Genetic variants in the TLR-related pathway and smoking exposure alter the upper airway microbiota in adult asthmatic patients.
        Allergy. 2021; 76: 3217-3220
        • Jackson D.J.
        • Gangnon R.E.
        • Evans M.D.
        • Roberg K.A.
        • Anderson E.L.
        • Pappas T.E.
        • Printz M.C.
        • Lee W.M.
        • Shult P.A.
        • Reisdorf E.
        • et al.
        Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children.
        Am. J. Respir. Crit. Care Med. 2008; 178: 667-672
        • Jackson D.J.
        • Gern J.E.
        Rhinovirus infections and their roles in asthma: etiology and exacerbations.
        J. Allergy Clin. Immunol. Pract. 2022; 10: 673-681
        • Makrinioti H.
        • Hasegawa K.
        • Lakoumentas J.
        • Xepapadaki P.
        • Tsolia M.
        • Castro-Rodriguez J.A.
        • Feleszko W.
        • Jartti T.
        • Johnston S.L.
        • Bush A.
        • et al.
        The role of respiratory syncytial virus- and rhinovirus-induced bronchiolitis in recurrent wheeze and asthma-A systematic review and meta-analysis.
        Pediatr. Allergy Immunol. 2022; 33e13741
        • Rajput C.
        • Han M.
        • Ishikawa T.
        • Lei J.
        • Goldsmith A.M.
        • Jazaeri S.
        • Stroupe C.C.
        • Bentley J.K.
        • Hershenson M.B.
        Rhinovirus C infection induces type 2 innate lymphoid cell expansion and eosinophilic airway inflammation.
        Front. Immunol. 2021; 12649520
        • Jakiela B.
        • Rebane A.
        • Soja J.
        • Bazan-Socha S.
        • Laanesoo A.
        • Plutecka H.
        • Surmiak M.
        • Sanak M.
        • Sladek K.
        • Bochenek G.
        Remodeling of bronchial epithelium caused by asthmatic inflammation affects its response to rhinovirus infection.
        Sci. Rep. 2021; 1112821
        • Kast J.I.
        • McFarlane A.J.
        • Globinska A.
        • Sokolowska M.
        • Wawrzyniak P.
        • Sanak M.
        • Schwarze J.
        • Akdis C.A.
        • Wanke K.
        Respiratory syncytial virus infection influences tight junction integrity.
        Clin. Exp. Immunol. 2017; 190: 351-359
        • Kloepfer K.M.
        • Lee W.M.
        • Pappas T.E.
        • Kang T.J.
        • Vrtis R.F.
        • Evans M.D.
        • Gangnon R.E.
        • Bochkov Y.A.
        • Jackson D.J.
        • Lemanske Jr., R.F.
        • et al.
        Detection of pathogenic bacteria during rhinovirus infection is associated with increased respiratory symptoms and asthma exacerbations.
        J. Allergy Clin. Immunol. 2014; 133 (1307 e1301-1303): 1301-1307
        • McCauley K.
        • Durack J.
        • Valladares R.
        • Fadrosh D.W.
        • Lin D.L.
        • Calatroni A.
        • LeBeau P.K.
        • Tran H.T.
        • Fujimura K.E.
        • LaMere B.
        • et al.
        Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma.
        J. Allergy Clin. Immunol. 2019; 144: 1187-1197
        • Robinson P.F.M.
        • Pattaroni C.
        • Cook J.
        • Gregory L.
        • Alonso A.M.
        • Fleming L.J.
        • Lloyd C.M.
        • Bush A.
        • Marsland B.J.
        • Saglani S.
        Lower airway microbiota associates with inflammatory phenotype in severe preschool wheeze.
        J. Allergy Clin. Immunol. 2019; 143 (e1603): 1607-1610
        • Rosas-Salazar C.
        • Shilts M.H.
        • Tovchigrechko A.
        • Schobel S.
        • Chappell J.D.
        • Larkin E.K.
        • Gebretsadik T.
        • Halpin R.A.
        • Nelson K.E.
        • Moore M.L.
        • et al.
        Nasopharyngeal Lactobacillus is associated with a reduced risk of childhood wheezing illnesses following acute respiratory syncytial virus infection in infancy.
        J. Allergy Clin. Immunol. 2018; 142 (e1449): 1447-1456
        • Durack J.
        • Kimes N.E.
        • Lin D.L.
        • Rauch M.
        • McKean M.
        • McCauley K.
        • Panzer A.R.
        • Mar J.S.
        • Cabana M.D.
        • Lynch S.V.
        Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation.
        Nat. Commun. 2018; 9: 707
        • van Tilburg Bernardes E.
        • Gutierrez M.W.
        • Arrieta M.C.
        The fungal microbiome and asthma.
        Front. Cell. Infect. Microbiol. 2020; 10583418
        • Lin C.H.
        • Li Y.R.
        • Kor C.T.
        • Lin S.H.
        • Ji B.C.
        • Lin M.T.
        • Chai W.H.
        The mediating effect of cytokines on the association between fungal sensitization and poor clinical outcome in asthma.
        Biomedicines. 2022; 10
        • Huang C.
        • Yu Y.
        • Du W.
        • Liu Y.
        • Dai R.
        • Tang W.
        • Wang P.
        • Zhang C.
        • Shi G.
        Fungal and bacterial microbiome dysbiosis and imbalance of trans-kingdom network in asthma.
        Clin. Transl. Allergy. 2020; 10: 42
        • Sharma A.
        • Laxman B.
        • Naureckas E.T.
        • Hogarth D.K.
        • Sperling A.I.
        • Solway J.
        • Ober C.
        • Gilbert J.A.
        • White S.R.
        Associations between fungal and bacterial microbiota of airways and asthma endotypes.
        J. Allergy Clin. Immunol. 2019; 144 (e1217): 1214-1227
        • van Tilburg Bernardes E.
        • Pettersen V.K.
        • Gutierrez M.W.
        • Laforest-Lapointe I.
        • Jendzjowsky N.G.
        • Cavin J.B.
        • Vicentini F.A.
        • Keenan C.M.
        • Ramay H.R.
        • Samara J.
        • et al.
        Intestinal fungi are causally implicated in microbiome assembly and immune development in mice.
        Nat. Commun. 2020; 11: 2577
        • Wu Y.
        • Zeng Z.
        • Guo Y.
        • Song L.
        • Weatherhead J.E.
        • Huang X.
        • Zeng Y.
        • Bimler L.
        • Chang C.Y.
        • Knight J.M.
        • et al.
        Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization.
        Immunity. 2021; 54 (e2597): 2595-2610
        • Zhang Z.
        • Biagini Myers J.M.
        • Brandt E.B.
        • Ryan P.H.
        • Lindsey M.
        • Mintz-Cole R.A.
        • Reponen T.
        • Vesper S.J.
        • Forde F.
        • Ruff B.
        • et al.
        beta-Glucan exacerbates allergic asthma independent of fungal sensitization and promotes steroid-resistant TH2/TH17 responses.
        J. Allergy Clin. Immunol. 2017; 139: 54-65 e58
        • Guilleminault L.
        • Williams E.J.
        • Scott H.A.
        • Berthon B.S.
        • Jensen M.
        • Wood L.G.
        Diet and asthma: is it time to adapt our message?.
        Nutrients. 2017; 9
        • Garcia-Montero C.
        • Fraile-Martinez O.
        • Gomez-Lahoz A.M.
        • Pekarek L.
        • Castellanos A.J.
        • Noguerales-Fraguas F.
        • Coca S.
        • Guijarro L.G.
        • Garcia-Honduvilla N.
        • Asunsolo A.
        • et al.
        Nutritional components in western diet versus mediterranean diet at the gut microbiota-immune system Interplay. Implications for health and disease.
        Nutrients. 2021; 13
        • Lewis G.
        • Wang B.
        • Shafiei Jahani P.
        • Hurrell B.P.
        • Banie H.
        • Aleman Muench G.R.
        • Maazi H.
        • Helou D.G.
        • Howard E.
        • Galle-Treger L.
        • et al.
        Dietary fiber-induced microbial short chain fatty acids suppress ILC2-dependent airway inflammation.
        Front. Immunol. 2019; 10: 2051
        • Park J.
        • Kim M.
        • Kang S.G.
        • Jannasch A.H.
        • Cooper B.
        • Patterson J.
        • Kim C.H.
        Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway.
        Mucosal Immunol. 2015; 8: 80-93
        • Louis P.
        • Flint H.J.
        Formation of propionate and butyrate by the human colonic microbiota.
        Environ. Microbiol. 2017; 19: 29-41
        • Hufnagl K.
        • Pali-Scholl I.
        • Roth-Walter F.
        • Jensen-Jarolim E.
        Dysbiosis of the gut and lung microbiome has a role in asthma.
        Semin. Immunopathol. 2020; 42: 75-93
        • Kim K.N.
        • Yao Y.
        • Ju S.Y.
        Short chain fatty acids and fecal microbiota abundance in humans with obesity: a systematic review and meta-analysis.
        Nutrients. 2019; 11
        • Losol P.
        • Barcik W.
        Dietary fiber and fermented food consumption and its link to allergic responses.
        Allergy. 2022;
        • Wastyk H.C.
        • Fragiadakis G.K.
        • Perelman D.
        • Dahan D.
        • Merrill B.D.
        • Yu F.B.
        • Topf M.
        • Gonzalez C.G.
        • Van Treuren W.
        • Han S.
        • et al.
        Gut-microbiota-targeted diets modulate human immune status.
        Cell. 2021; 184 (e4114): 4137-4153
        • Merra G.
        • Noce A.
        • Marrone G.
        • Cintoni M.
        • Tarsitano M.G.
        • Capacci A.
        • De Lorenzo A.
        Influence of mediterranean diet on human gut microbiota.
        Nutrients. 2020; 13
        • Roduit C.
        • Frei R.
        • Ferstl R.
        • Loeliger S.
        • Westermann P.
        • Rhyner C.
        • Schiavi E.
        • Barcik W.
        • Rodriguez-Perez N.
        • Wawrzyniak M.
        • et al.
        High levels of butyrate and propionate in early life are associated with protection against atopy.
        Allergy. 2019; 74: 799-809
        • Tibbs T.N.
        • Lopez L.R.
        • Arthur J.C.
        The influence of the microbiota on immune development, chronic inflammation, and cancer in the context of aging.
        Microb. Cell. 2019; 6: 324-334
        • Schleich F.
        • Graff S.
        • Guissard F.
        • Henket M.
        • Paulus V.
        • Louis R.
        Asthma in elderly is characterized by increased sputum neutrophils, lower airway caliber variability and air trapping.
        Respir. Res. 2021; 22: 15
        • Soma T.
        • Nagata M.
        Immunosenescence, inflammaging, and lung senescence in asthma in the elderly.
        Biomolecules. 2022; 12
        • Barkaway A.
        • Rolas L.
        • Joulia R.
        • Bodkin J.
        • Lenn T.
        • Owen-Woods C.
        • Reglero-Real N.
        • Stein M.
        • Vazquez-Martinez L.
        • Girbl T.
        • et al.
        Age-related changes in the local milieu of inflamed tissues cause aberrant neutrophil trafficking and subsequent remote organ damage.
        Immunity. 2021; 54: 1494-1510 e1497
        • Gibson K.L.
        • Wu Y.C.
        • Barnett Y.
        • Duggan O.
        • Vaughan R.
        • Kondeatis E.
        • Nilsson B.O.
        • Wikby A.
        • Kipling D.
        • Dunn-Walters D.K.
        B-cell diversity decreases in old age and is correlated with poor health status.
        Aging Cell. 2009; 8: 18-25
        • Weng N.P.
        • Akbar A.N.
        • Goronzy J.
        CD28(-) T cells: their role in the age-associated decline of immune function.
        Trends Immunol. 2009; 30: 306-312
        • Ragonnaud E.
        • Biragyn A.
        Gut microbiota as the key controllers of "healthy" aging of elderly people.
        Immun. Ageing. 2021; 18: 2
        • Rothschild D.
        • Weissbrod O.
        • Barkan E.
        • Kurilshikov A.
        • Korem T.
        • Zeevi D.
        • Costea P.I.
        • Godneva A.
        • Kalka I.N.
        • Bar N.
        • et al.
        Environment dominates over host genetics in shaping human gut microbiota.
        Nature. 2018; 555: 210-215
        • Caliskan M.
        • Bochkov Y.A.
        • Kreiner-Moller E.
        • Bonnelykke K.
        • Stein M.M.
        • Du G.
        • Bisgaard H.
        • Jackson D.J.
        • Gern J.E.
        • Lemanske Jr., R.F.
        • et al.
        Rhinovirus wheezing illness and genetic risk of childhood-onset asthma.
        N. Engl. J. Med. 2013; 368: 1398-1407
        • Hughes D.A.
        • Bacigalupe R.
        • Wang J.
        • Ruhlemann M.C.
        • Tito R.Y.
        • Falony G.
        • Joossens M.
        • Vieira-Silva S.
        • Henckaerts L.
        • Rymenans L.
        • et al.
        Genome-wide associations of human gut microbiome variation and implications for causal inference analyses.
        Nat. Microbiol. 2020; 5: 1079-1087
        • Awany D.
        • Allali I.
        • Dalvie S.
        • Hemmings S.
        • Mwaikono K.S.
        • Thomford N.E.
        • Gomez A.
        • Mulder N.
        • Chimusa E.R.
        Host and microbiome genome-wide association studies: current state and challenges.
        Front. Genet. 2018; 9: 637
        • Kurilshikov A.
        • Medina-Gomez C.
        • Bacigalupe R.
        • Radjabzadeh D.
        • Wang J.
        • Demirkan A.
        • Le Roy C.I.
        • Raygoza Garay J.A.
        • Finnicum C.T.
        • Liu X.
        • et al.
        Large-scale association analyses identify host factors influencing human gut microbiome composition.
        Nat. Genet. 2021; 53: 156-165
        • Lopera-Maya E.A.
        • Kurilshikov A.
        • van der Graaf A.
        • Hu S.
        • Andreu-Sanchez S.
        • Chen L.
        • Vila A.V.
        • Gacesa R.
        • Sinha T.
        • Collij V.
        • et al.
        Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project.
        Nat. Genet. 2022; 54: 143-151
        • Bilotta A.J.
        • Cong Y.
        Gut microbiota metabolite regulation of host defenses at mucosal surfaces: implication in precision medicine.
        Precis Clin. Med. 2019; 2: 110-119
        • Deleu S.
        • Machiels K.
        • Raes J.
        • Verbeke K.
        • Vermeire S.
        Short chain fatty acids and its producing organisms: an overlooked therapy for IBD?.
        EBioMedicine. 2021; 66103293
        • Arrieta M.C.
        • Arevalo A.
        • Stiemsma L.
        • Dimitriu P.
        • Chico M.E.
        • Loor S.
        • Vaca M.
        • Boutin R.C.T.
        • Morien E.
        • Jin M.
        • et al.
        Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting.
        J. Allergy Clin. Immunol. 2018; 142: 424-434 e410
        • Thorburn A.N.
        • McKenzie C.I.
        • Shen S.
        • Stanley D.
        • Macia L.
        • Mason L.J.
        • Roberts L.K.
        • Wong C.H.
        • Shim R.
        • Robert R.
        • et al.
        Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites.
        Nat. Commun. 2015; 6: 7320
        • Theiler A.
        • Barnthaler T.
        • Platzer W.
        • Richtig G.
        • Peinhaupt M.
        • Rittchen S.
        • Kargl J.
        • Ulven T.
        • Marsh L.M.
        • Marsche G.
        • et al.
        Butyrate ameliorates allergic airway inflammation by limiting eosinophil trafficking and survival.
        J. Allergy Clin. Immunol. 2019; 144: 764-776
        • Kaisar M.M.M.
        • Pelgrom L.R.
        • van der Ham A.J.
        • Yazdanbakhsh M.
        • Everts B.
        Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling.
        Front. Immunol. 2017; 8: 1429
        • Folkerts J.
        • Redegeld F.
        • Folkerts G.
        • Blokhuis B.
        • van den Berg M.P.M.
        • de Bruijn M.J.W.
        • van I.W.F.J.
        • Junt T.
        • Tam S.Y.
        • Galli S.J.
        • et al.
        Butyrate inhibits human mast cell activation via epigenetic regulation of FcepsilonRI-mediated signaling.
        Allergy. 2020; 75: 1966-1978
        • Chiu C.Y.
        • Cheng M.L.
        • Chiang M.H.
        • Kuo Y.L.
        • Tsai M.H.
        • Chiu C.C.
        • Lin G.
        Gut microbial-derived butyrate is inversely associated with IgE responses to allergens in childhood asthma.
        Pediatr. Allergy Immunol. 2019; 30: 689-697
        • Thio C.L.
        • Chi P.Y.
        • Lai A.C.
        • Chang Y.J.
        Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate.
        J. Allergy Clin. Immunol. 2018; 142: 1867-1883 e1812
        • Michalovich D.
        • Rodriguez-Perez N.
        • Smolinska S.
        • Pirozynski M.
        • Mayhew D.
        • Uddin S.
        • Van Horn S.
        • Sokolowska M.
        • Altunbulakli C.
        • Eljaszewicz A.
        • et al.
        Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients.
        Nat. Commun. 2019; 10: 5711
        • Smith P.M.
        • Howitt M.R.
        • Panikov N.
        • Michaud M.
        • Gallini C.A.
        • Bohlooly Y.M.
        • Glickman J.N.
        • Garrett W.S.
        The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis.
        Science. 2013; 341: 569-573
        • Huang C.
        • Du W.
        • Ni Y.
        • Lan G.
        • Shi G.
        The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo.
        Clin. Exp. Immunol. 2022; 207: 53-64
        • Foh B.
        • Buhre J.S.
        • Lunding H.B.
        • Moreno-Fernandez M.E.
        • Konig P.
        • Sina C.
        • Divanovic S.
        • Ehlers M.
        Microbial metabolite butyrate promotes induction of IL-10+IgM+ plasma cells.
        PLoS One. 2022; 17e0266071
        • Kim D.S.
        • Woo J.S.
        • Min H.K.
        • Choi J.W.
        • Moon J.H.
        • Park M.J.
        • Kwok S.K.
        • Park S.H.
        • Cho M.L.
        Short-chain fatty acid butyrate induces IL-10-producing B cells by regulating circadian-clock-related genes to ameliorate Sjogren's syndrome.
        J. Autoimmun. 2021; 119102611
        • Manni M.L.
        • Heinrich V.A.
        • Buchan G.J.
        • O'Brien J.P.
        • Uvalle C.
        • Cechova V.
        • Koudelka A.
        • Ukani D.
        • Rawas-Qalaji M.
        • Oury T.D.
        • et al.
        Nitroalkene fatty acids modulate bile acid metabolism and lung function in obese asthma.
        Sci. Rep. 2021; 1117788
        • Arrieta M.C.
        • Stiemsma L.T.
        • Dimitriu P.A.
        • Thorson L.
        • Russell S.
        • Yurist-Doutsch S.
        • Kuzeljevic B.
        • Gold M.J.
        • Britton H.M.
        • Lefebvre D.L.
        • et al.
        Early infancy microbial and metabolic alterations affect risk of childhood asthma.
        Sci. Transl. Med. 2015; 7 (307ra152)
        • Gurdeniz G.
        • Ernst M.
        • Rago D.
        • Kim M.
        • Courraud J.
        • Stokholm J.
        • Bonnelykke K.
        • Bjorkbom A.
        • Trivedi U.
        • Sorensen S.J.
        • et al.
        Neonatal metabolome of caesarean section and risk of childhood asthma.
        Eur. Respir. J. 2022; 59
        • Bekebrede A.F.
        • Keijer J.
        • Gerrits W.J.J.
        • Boer V.C.J.
        The molecular and physiological effects of protein-derived polyamines in the intestine.
        Nutrients. 2020; 12
        • Wawrzyniak M.
        • Groeger D.
        • Frei R.
        • Ferstl R.
        • Wawrzyniak P.
        • Krawczyk K.
        • Pugin B.
        • Barcik W.
        • Westermann P.
        • Dreher A.
        • et al.
        Spermidine and spermine exert protective effects within the lung.
        Pharmacol. Res. Perspect. 2021; 9e00837
        • Jain V.
        • Raina S.
        • Gheware A.P.
        • Singh R.
        • Rehman R.
        • Negi V.
        • Murray Stewart T.
        • Mabalirajan U.
        • Mishra A.K.
        • Casero Jr., R.A.
        • et al.
        Reduction in polyamine catabolism leads to spermine-mediated airway epithelial injury and induces asthma features.
        Allergy. 2018; 73: 2033-2045
        • Carriche G.M.
        • Almeida L.
        • Stuve P.
        • Velasquez L.
        • Dhillon-LaBrooy A.
        • Roy U.
        • Lindenberg M.
        • Strowig T.
        • Plaza-Sirvent C.
        • Schmitz I.
        • et al.
        Regulating T-cell differentiation through the polyamine spermidine.
        J. Allergy Clin. Immunol. 2021; 147: 335-348 e311
        • Poulain-Godefroy O.
        • Boute M.
        • Carrard J.
        • Alvarez-Simon D.
        • Tsicopoulos A.
        • de Nadai P.
        The aryl hydrocarbon receptor in asthma: friend or foe?.
        Int. J. Mol. Sci. 2020; 21
        • Chang Y.D.
        • Li C.H.
        • Tsai C.H.
        • Cheng Y.W.
        • Kang J.J.
        • Lee C.C.
        Aryl hydrocarbon receptor deficiency enhanced airway inflammation and remodeling in a murine chronic asthma model.
        Faseb. J. 2020; 34: 15300-15313
        • Traboulsi H.
        • de Souza A.R.
        • Allard B.
        • Haidar Z.
        • Sorin M.
        • Moarbes V.
        • Fixman E.D.
        • Martin J.G.
        • Eidelman D.H.
        • Baglole C.J.
        Differential regulation of the asthmatic phenotype by the aryl hydrocarbon receptor.
        Front. Physiol. 2021; 12720196
        • Kelly R.S.
        • Sordillo J.E.
        • Lasky-Su J.
        • Dahlin A.
        • Perng W.
        • Rifas-Shiman S.L.
        • Weiss S.T.
        • Gold D.R.
        • Litonjua A.A.
        • Hivert M.F.
        • et al.
        Plasma metabolite profiles in children with current asthma.
        Clin. Exp. Allergy. 2018; 48: 1297-1304
        • Barcik W.
        • Pugin B.
        • Westermann P.
        • Perez N.R.
        • Ferstl R.
        • Wawrzyniak M.
        • Smolinska S.
        • Jutel M.
        • Hessel E.M.
        • Michalovich D.
        • et al.
        Histamine-secreting microbes are increased in the gut of adult asthma patients.
        J. Allergy Clin. Immunol. 2016; 138: 1491-1494 e1497
        • Yamauchi K.
        • Ogasawara M.
        The role of histamine in the pathophysiology of asthma and the clinical efficacy of antihistamines in asthma therapy.
        Int. J. Mol. Sci. 2019; 20
        • Lee-Sarwar K.
        • Dedrick S.
        • Momeni B.
        • Kelly R.S.
        • Zeiger R.S.
        • O'Connor G.T.
        • Sandel M.T.
        • Bacharier L.B.
        • Beigelman A.
        • Laranjo N.
        • et al.
        Association of the gut microbiome and metabolome with wheeze frequency in childhood asthma.
        J. Allergy Clin. Immunol. 2022;
        • Zheng P.
        • Zhang K.
        • Lv X.
        • Liu C.
        • Wang Q.
        • Bai X.
        Gut microbiome and metabolomics profiles of allergic and non-allergic childhood asthma.
        J. Asthma Allergy. 2022; 15: 419-435
        • Diaz-Perales A.
        • Escribese M.M.
        • Garrido-Arandia M.
        • Obeso D.
        • Izquierdo-Alvarez E.
        • Tome-Amat J.
        • Barber D.
        The role of sphingolipids in allergic disorders.
        Front. Allergy. 2021; 2675557
        • Kim S.H.
        • Jung H.W.
        • Kim M.
        • Moon J.Y.
        • Ban G.Y.
        • Kim S.J.
        • Yoo H.J.
        • Park H.S.
        Ceramide/sphingosine-1-phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma.
        Allergy. 2020; 75: 1991-2004
        • Ban G.Y.
        • Youn D.Y.
        • Ye Y.M.
        • Park H.S.
        Increased expression of serine palmitoyl transferase and ORMDL3 polymorphism are associated with eosinophilic inflammation and airflow limitation in aspirin-exacerbated respiratory disease.
        PLoS One. 2020; 15e0240334
        • James B.N.
        • Oyeniran C.
        • Sturgill J.L.
        • Newton J.
        • Martin R.K.
        • Bieberich E.
        • Weigel C.
        • Maczis M.A.
        • Palladino E.N.D.
        • Lownik J.C.
        • et al.
        Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma.
        J. Allergy Clin. Immunol. 2021; 147: 1936-1948 e1939
        • Fujimura K.E.
        • Sitarik A.R.
        • Havstad S.
        • Lin D.L.
        • Levan S.
        • Fadrosh D.
        • Panzer A.R.
        • LaMere B.
        • Rackaityte E.
        • Lukacs N.W.
        • et al.
        Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation.
        Nat. Med. 2016; 22: 1187-1191
        • Levan S.R.
        • Stamnes K.A.
        • Lin D.L.
        • Panzer A.R.
        • Fukui E.
        • McCauley K.
        • Fujimura K.E.
        • McKean M.
        • Ownby D.R.
        • Zoratti E.M.
        • et al.
        Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance.
        Nat. Microbiol. 2019; 4: 1851-1861
        • Fyhrquist N.
        • Ruokolainen L.
        • Suomalainen A.
        • Lehtimaki S.
        • Veckman V.
        • Vendelin J.
        • Karisola P.
        • Lehto M.
        • Savinko T.
        • Jarva H.
        • et al.
        Acinetobacter species in the skin microbiota protect against allergic sensitization and inflammation.
        J. Allergy Clin. Immunol. 2014; 134 (e1311): 1301-1309
        • Byrd A.L.
        • Belkaid Y.
        • Segre J.A.
        The human skin microbiome.
        Nat. Rev. Microbiol. 2018; 16: 143-155
        • Nakatsuji T.
        • Chen T.H.
        • Narala S.
        • Chun K.A.
        • Two A.M.
        • Yun T.
        • Shafiq F.
        • Kotol P.F.
        • Bouslimani A.
        • Melnik A.V.
        • et al.
        Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis.
        Sci. Transl. Med. 2017; 9
        • Naik S.
        • Bouladoux N.
        • Linehan J.L.
        • Han S.J.
        • Harrison O.J.
        • Wilhelm C.
        • Conlan S.
        • Himmelfarb S.
        • Byrd A.L.
        • Deming C.
        • et al.
        Commensal-dendritic-cell interaction specifies a unique protective skin immune signature.
        Nature. 2015; 520: 104-108
        • Hanski I.
        • von Hertzen L.
        • Fyhrquist N.
        • Koskinen K.
        • Torppa K.
        • Laatikainen T.
        • Karisola P.
        • Auvinen P.
        • Paulin L.
        • Makela M.J.
        • et al.
        Environmental biodiversity, human microbiota, and allergy are interrelated.
        Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 8334-8339
        • Ruokolainen L.
        • von Hertzen L.
        • Fyhrquist N.
        • Laatikainen T.
        • Lehtomaki J.
        • Auvinen P.
        • Karvonen A.M.
        • Hyvarinen A.
        • Tillmann V.
        • Niemela O.
        • et al.
        Green areas around homes reduce atopic sensitization in children.
        Allergy. 2015; 70: 195-202
        • Ruokolainen L.
        • Paalanen L.
        • Karkman A.
        • Laatikainen T.
        • von Hertzen L.
        • Vlasoff T.
        • Markelova O.
        • Masyuk V.
        • Auvinen P.
        • Paulin L.
        • et al.
        Significant disparities in allergy prevalence and microbiota between the young people in Finnish and Russian Karelia.
        Clin. Exp. Allergy. 2017; 47: 665-674
        • Peng D.
        • Shi Y.
        • Pang J.
        • Cui L.
        • Xu Y.
        • Meng H.
        • Wang D.
        • Li Y.
        • Cui Y.
        • Chen Y.
        • et al.
        Early-life infection of the airways with Streptococcus pneumoniae exacerbates HDM-induced asthma in a murine model.
        Cell. Immunol. 2022; 376104536
        • Son J.H.
        • Kim J.H.
        • Chang H.S.
        • Park J.S.
        • Park C.S.
        Relationship of microbial profile with airway immune response in eosinophilic or neutrophilic inflammation of asthmatics.
        Allergy Asthma Immunol. Res. 2020; 12: 412-429
        • Goleva E.
        • Jackson L.P.
        • Harris J.K.
        • Robertson C.E.
        • Sutherland E.R.
        • Hall C.F.
        • Good Jr., J.T.
        • Gelfand E.W.
        • Martin R.J.
        • Leung D.Y.
        The effects of airway microbiome on corticosteroid responsiveness in asthma.
        Am. J. Respir. Crit. Care Med. 2013; 188: 1193-1201
        • Schaunaman N.
        • Dimasuay K.G.
        • Cervantes D.
        • Li L.
        • Numata M.
        • Kraft M.
        • Chu H.W.
        Tollip inhibits IL-33 release and inflammation in influenza A virus-infected mouse airways.
        J. Innate Immun. 2022; : 1-11
        • Bernatchez E.
        • Gold M.J.
        • Langlois A.
        • Blais-Lecours P.
        • Boucher M.
        • Duchaine C.
        • Marsolais D.
        • McNagny K.M.
        • Blanchet M.R.
        Methanosphaera stadtmanae induces a type IV hypersensitivity response in a mouse model of airway inflammation.
        Phys. Rep. 2017; 5