Original Research| Volume 210, 107173, April 2023

Aerobic exercise capacity is normal in obesity with or without metabolic syndrome

  • G. Deboeck
    Corresponding author. Research Unit in Rehabilitation Sciences, Faculty For Motorskills Sciences, Université Libre de Bruxelles, Route de Lennik, 808, CP604, 1070, Brussels, Belgium.
    Research Unit of Rehabilitation Sciences, Faculty of Motorskills Sciences, Université Libre de Bruxelles, route de Lennik 808, 1070, Brussels, Belgium
    Search for articles by this author
  • M. Vicenzi
    Dyspnea Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy

    Department of Cardio-Thoracic-Vascular Area, Cardiology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Italy
    Search for articles by this author
  • V. Faoro
    Research Unit of Cardio-Pulmonary Exercise Physiology Faculty of Motorskills Sciences, Université Libre de Bruxelles, route de Lennik 808, 1070, Brussels, Belgium
    Search for articles by this author
  • M. Lamotte
    Service of Cardiology, Hospital Erasme, Université Libre de Bruxelles, 1070, Brussels, Belgium
    Search for articles by this author
Published:February 27, 2023DOI:


      • Obese patients present with normal cardiopulmonary exercise adaptation.
      • Metabolic syndrome does not impact cardiopulmonary exercise adaptation.
      • VO2peakBMI24 is a meaningful index of aerobic capacity.



      Obesity might be a cause of limited aerobic exercise capacity. It is often associated with metabolic syndrome (MS) that includes cardiovascular comorbidities as arterial hypertension. Cardiopulmonary exercise testing (CPET) is the gold-standard to assess aerobic capacity and discriminate causes of dyspnea.


      To evaluate aerobic capacity in obesity and if MS or hypertensive treatment impacts on the CPET profile.


      CPET of 146 obese patients, whom 33 and 31 were matched for MS and antihypertensive medication, were analyzed. VO2peak (mL/min/Kg) was reported in percentage of predicted value, or, divided by body weight, fat free mass (FFM) or body weight expected for a body mass index of 24 (BMI24).


      VO2peak (20,8 ± 4,4 mL/min/Kg) was normal when expressed in percentage predicted for obesity (111 ± 22%pred) or divided by FFM and weightBMI24 (33,6 ± 5,6 and 30,6 ± 6,2 respectively). The latter correlated better with maximal work rate (r = 0,7168, p < 0,001). Obese patients showed normal ventilatory efficiency (ventilation to carbon dioxide production slope: 28 ± 4), VO2 to work rate (10,2 ± 1,6 mLO2/Watt) and, slightly elevated heart rate to VO2 slope (4,0 ± 1,1 bpm/mL/min/Kg). Compared to normotensives, hypertensive medicated patients had higher blood pressure at anaerobic threshold (142 ± 23 vs 158 ± 26 mmHg, p = 0,001) but not at maximal exercise (189 ± 31 vs 201 ± 23 mmHg, p = NS), and, had lower actual maximal heart rate (155 ± 23 vs 143 ± 25 bpm, p = 0,03). There was no difference between obese patients with or without MS.


      Obese people with or without MS present with similar and normal aerobic profile related to the excessive body weight. VO2peak divided by weightBMI24 is an easy and clinical meaningful index for obese patients.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Respiratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • World Health Organization
        Global Status Report on Noncommunicable Diseases 2010.
        2011 ([cité 12 juill 2022]; Disponible sur:)
        • Mottillo S.
        • Filion K.B.
        • Genest J.
        • Joseph L.
        • Pilote L.
        • Poirier P.
        • et al.
        The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis.
        J. Am. Coll. Cardiol. 2010; 56 (28 sept): 1113-1132
        • Wang H.H.
        • Lee D.K.
        • Liu M.
        • Portincasa P.
        • Wang D.Q.H.
        Novel insights into the pathogenesis and management of the metabolic syndrome.
        Pediatr Gastroenterol Hepatol Nutr. 2020; 23: 189
        • Wu S.H.
        • Hui W.S.
        • Liu Z.
        • Ho S.C.
        Metabolic syndrome and all-cause mortality: a meta-analysis of prospective cohort studies.
        Eur. J. Epidemiol. juin 2010; 25: 375-384
        • Beloka S.
        • Gujic M.
        • Deboeck G.
        • Niset G.
        • Ciarka A.
        • Argacha J.F.
        • et al.
        β-Adrenergic blockade and metabo-chemoreflex contributions to ExerciseCapacity.
        Med. Sci. Sports Exerc. nov 2008; 40: 1932-1938
        • Wen C.P.
        • Wai J.P.M.
        • Tsai M.K.
        • Yang Y.C.
        • Cheng T.Y.D.
        • Lee M.C.
        • et al.
        Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study.
        Lancet Lond Engl. 2011; 378 (1 oct): 1244-1253
        • Arena R.
        • Cahalin L.P.
        Evaluation of cardiorespiratory fitness and respiratory muscle function in the obese population.
        Prog. Cardiovasc. Dis. janv 2014; 56: 457-464
        • Hsuan C.F.
        • Huang C.K.
        • Lin J.W.
        • Lin L.C.
        • Lee T.L.
        • Tai C.M.
        • et al.
        The effect of surgical weight reduction on left ventricular structure and function in severe obesity.
        Obes Silver Spring Md. juin 2010; 18: 1188-1193
        • Xavier M.A.F.
        • Ceneviva R.
        • Terra Filho J.
        • Sankarankutty A.K.
        Pulmonary function and quality of life in patients with morbid obesity six months after bariatric surgery.
        Acta Cir. Bras. oct 2010; 25: 407-415
        • Coen P.M.
        • Hames K.C.
        • Leachman E.M.
        • DeLany J.P.
        • Ritov V.B.
        • Menshikova E.V.
        • et al.
        Reduced skeletal muscle oxidative capacity and elevated ceramide but not diacylglycerol content in severe obesity.
        Obes Silver Spring Md. nov 2013; 21: 2362-2371
        • Lund M.T.
        • Hansen M.
        • Wimmelmann C.L.
        • Taudorf L.R.
        • Helge J.W.
        • Mortensen E.L.
        • et al.
        Increased post-operative cardiopulmonary fitness in gastric bypass patients is explained by weight loss.
        Scand. J. Med. Sci. Sports. déc 2016; 26: 1428-1434
        • Guazzi M.
        • Wilhelm M.
        • Halle M.
        • Van Craenenbroeck E.
        • Kemps H.
        • de Boer R.A.
        • et al.
        Exercise testing in heart failure with preserved ejection fraction: an appraisal through diagnosis, pathophysiology and therapy – a clinical consensus statement of the Heart Failure Association and European Association of Preventive Cardiology of the European Society of Cardiology.
        Eur. J. Heart Fail. août 2022; 24: 1327-1345
        • Salvadori A.
        • Fanari P.
        • Fontana M.
        • Buontempi L.
        • Saezza A.
        • Baudo S.
        • et al.
        Oxygen uptake and cardiac performance in obese and normal subjects during exercise.
        Respir. Int. Rev. Thorac. Dis. 1999; 66: 25-33
        • Hulens M.
        • Vansant G.
        • Lysens R.
        • Claessens A.L.
        • Muls E.
        Exercise capacity in lean versus obese women.
        Scand. J. Med. Sci. Sports. oct 2001; 11: 305-309
        • Dereppe H.
        • Forton K.
        • Pauwen N.Y.
        • Faoro V.
        Impact of bariatric surgery on women aerobic exercise capacity.
        Obes. Surg. oct 2019; 29: 3316-3323
        • Sietsema K.E.
        • Sue D.Y.
        • Stringer W.W.
        • Ward S.A.
        Wasserman & Whipp's Principles of Exercise Testing and Interpretation [Internet]. Wolter Kluwer.
        2020 ([cité 12 juill 2022]. Disponible sur:)
        • Jones N.L.
        • Killian K.J.
        Exercise limitation in health and disease.
        N. Engl. J. Med. 2000; 343 (31 août): 632-641
        • Hulens M.
        • Vansant G.
        • Claessens A.L.
        • Lysens R.
        • Muls E.
        Predictors of 6-minute walk test results in lean, obese and morbidly obese women.
        Scand. J. Med. Sci. Sports. avr 2003; 13: 98-105
        • Serés L.
        • Lopez-Ayerbe J.
        • Coll R.
        • Rodriguez O.
        • Vila J.
        • Formiguera X.
        • et al.
        Increased exercise capacity after surgically induced weight loss in morbid obesity.
        Obes Silver Spring Md. févr 2006; 14: 273-279
        • Marinov B.
        • Kostianev S.
        • Turnovska T.
        Ventilatory efficiency and rate of perceived exertion in obese and non-obese children performing standardized exercise.
        Clin. Physiol. Funct. Imag. juill 2002; 22: 254-260
        • Gonze B. de B.
        • Ostolin T.L.V.D.P.
        • Barbosa A.C.B.
        • Matheus A.C.
        • Sperandio E.F.
        • Gagliardi AR. de T.
        • et al.
        Dynamic physiological responses in obese and non-obese adults submitted to cardiopulmonary exercise test.
        Lionetti V, éditeur. PLOS ONE. 2021; 16 (9 août)e0255724
        • Dreher M.
        • Kabitz H.J.
        Impact of obesity on exercise performance and pulmonary rehabilitation: exercise and rehabilitation in obesity.
        Respirology. août. 2012; 17: 899-907
        • Deboeck G.
        • Scoditti C.
        • Huez S.
        • Vachiéry J.L.
        • Lamotte M.
        • Sharples L.
        • et al.
        Exercise testing to predict outcome in idiopathic versus associated pulmonary arterial hypertension.
        Eur. Respir. J. déc 2012; 40: 1410-1419
        • Mehra M.R.
        • Canter C.E.
        • Hannan M.M.
        • Semigran M.J.
        • Uber P.A.
        • Baran D.A.
        • et al.
        The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update.
        J. Heart Lung Transplant. janv 2016; 35: 1-23
        • Ross R.
        • Blair S.N.
        • Arena R.
        • Church T.S.
        • Després J.P.
        • Franklin B.A.
        • et al.
        Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement from the American Heart Association. Circulation [Internet].
        2016 (13 déc) ([cité 18 nov 2021];134(24). Disponible sur:)
        • Chase P.
        • Arena R.
        • Myers J.
        • Abella J.
        • Peberdy M.A.
        • Guazzi M.
        • et al.
        Relation of the prognostic value of ventilatory efficiency to body mass index in patients with heart failure.
        Am. J. Cardiol. févr 2008; 101: 348-352
        • Guazzi M.
        • Raimondo R.
        • Vicenzi M.
        • Arena R.
        • Proserpio C.
        • Sarzi Braga S.
        • et al.
        Exercise oscillatory ventilation may predict sudden cardiac death in heart failure patients.
        J. Am. Coll. Cardiol. juill 2007; 50: 299-308
        • Salvioni E.
        • Corrà U.
        • Piepoli M.
        • Rovai S.
        • Correale M.
        • Paolillo S.
        • et al.
        Gender and age normalization and ventilation efficiency during exercise in heart failure with reduced ejection fraction.
        ESC Heart Fail. févr 2020; 7: 368-377
        • DeJong A.T.
        • Gallagher M.J.
        • Sandberg K.R.
        • Lillystone M.A.
        • Spring T.
        • Franklin B.A.
        • et al.
        Peak oxygen consumption and the minute ventilation/carbon dioxide production relation slope in morbidly obese men and women: influence of subject effort and body mass index.
        Prev. Cardiol. 2008; 11 (28 juin): 100-105
        • Zavorsky G.S.
        • Kim D.J.
        • Christou N.V.
        Compensatory exercise hyperventilation is restored in the morbidly obese after bariatric surgery.
        Obes. Surg. mai 2008; 18: 549-559
        • Borasio N.
        • Neunhaeuserer D.
        • Gasperetti A.
        • Favero C.
        • Baioccato V.
        • Bergamin M.
        • et al.
        Ventilatory response at rest and during maximal exercise testing in patients with severe obesity before and after sleeve gastrectomy.
        Obes. Surg. févr 2021; 31: 694-701
        • Keller-Ross M.L.
        • Chantigian D.P.
        • Evanoff N.
        • Bantle A.E.
        • Dengel D.R.
        • Chow L.S.
        VE/VCO2 slope in lean and overweight women and its relationship to lean leg mass.
        IJC Heart Vasc. déc 2018; 21: 107-110
        • Piepoli M.F.
        • Corrà U.
        • Veglia F.
        • Bonomi A.
        • Salvioni E.
        • Cattadori G.
        • et al.
        Exercise tolerance can explain the obesity paradox in patients with systolic heart failure: data from the MECKI Score Research Group: exercise tolerance can explain the obesity paradox in heart failure.
        Eur. J. Heart Fail. mai. 2016; 18: 545-553
        • Zavorsky G.S.
        • Kim D.J.
        • Christou N.V.
        Compensatory exercise hyperventilation is restored in the morbidly obese after bariatric surgery.
        Obes. Surg. mai 2008; 18: 549-559
        • Levy D.
        • Larson M.G.
        • Vasan R.S.
        • Kannel W.B.
        • Ho K.K.
        The progression from hypertension to congestive heart failure.
        JAMA. 1996; 275 (22 mai): 1557-1562
        • Ford E.S.
        Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence.
        Diabetes Care. 2005; 28 (1 juill): 1769-1778
        • Katzmarzyk P.T.
        • Church T.S.
        • Blair S.N.
        Cardiorespiratory fitness attenuates the effects of the metabolic syndrome on all-cause and cardiovascular disease mortality in men.
        Arch. Intern. Med. 2004; 164 (24 mai): 1092