Advertisement
Review Article|Articles in Press, 107217

Towards development of evidence to inform recommendations for the evaluation and management of bronchiectasis

Open AccessPublished:March 15, 2023DOI:https://doi.org/10.1016/j.rmed.2023.107217

      Highlights

      • Bronchiectasis (BE) is increasing in prevalence but clinical guidelines are limited.
      • Few established standards of care exist for BE based on high-quality evidence.
      • Guidance for airway clearance and appropriate antimicrobial use is lacking.
      • Clinical trials with more accurate inclusion criteria and relevant endpoints are needed for improved BE management.
      • New assessment frameworks/evidence-based treatment recommendations are required.

      Abstract

      Bronchiectasis (BE) is a chronic condition characterized by airway dilation as a consequence of a variety of pathogenic processes. It is often associated with persistent airway infection and an inflammatory response resulting in cough productive of purulent sputum, which has an adverse impact on quality of life. The prevalence of BE is increasing worldwide. Treatment guidelines exist for managing BE, but they are generally informed by a paucity of high-quality evidence. This review presents the findings of a scientific advisory board of experts held in the United States in November 2020. The main focus of the meeting was to identify unmet needs in BE and propose ways to identify research priorities for the management of BE, with a view to developing evidence-based treatment recommendations. Key issues identified include diagnosis, patient evaluation, promoting airway clearance and appropriate use of antimicrobials. Unmet needs include effective pharmacological agents to promote airway clearance and reduce inflammation, control of chronic infection, clinical endpoints to be used in the design of BE clinical trials, and more accurate classification of patients using phenotypes and endotypes to better guide treatment decisions and improve outcomes.

      Keywords

      Abbreviations

      ABPA
      allergic bronchopulmonary aspergillosis
      BE
      bronchiectasis
      BSI
      Bronchiectasis Severity Index
      BTS
      British Thoracic Society
      CF
      cystic fibrosis
      CFTR
      cystic fibrosis transmembrane conductance regulator
      COPD
      comorbid chronic obstructive pulmonary disease
      CRP
      C-reactive protein
      CT
      computed tomography
      DPP1
      dipeptidyl peptidase 1
      ERS
      European Respiratory Society
      FEV
      forced expiratory volume
      GMCF
      granulocyte macrophage colony-stimulating factor
      GERD
      gastro-esophageal reflux disease
      HRCT
      high resolution computed tomography
      HRQoL
      health-related quality of life
      IBD
      inflammatory bowel disease
      ICP
      increased intracranial pressure
      ICS
      inhaled corticosteroids
      Ig
      immunoglobulin
      IL
      interleukin
      MAC
      Mycobacterium avium complex
      MMP-9
      matrix metalloproteinase 9
      N/A
      not applicable
      NE
      neutrophil elastase
      NSP
      neutrophil serine proteases
      NTM
      nontuberculous mycobacteria
      PCD
      primary ciliary dyskinesia
      PEx
      pulmonary exacerbations
      PID
      primary immunodeficiency disorder
      PPI
      proton pump inhibitor
      RA
      rheumatoid arthritis
      TB
      tuberculosis
      TNF
      tumor necrosis factor
      TSANZ
      Thoracic Society of Australia and New Zealand
      UK
      United Kingdom
      US
      United States
      VEGF
      vascular endothelial growth factor

      1. Introduction

      Bronchiectasis (BE) is a chronic condition characterized by irreversible airway dilation resulting from injury to the bronchial walls. BE incidence and prevalence are increasing globally [
      • Diel R.
      • Ewig S.
      • Blaas S.
      • Jacob C.
      • Juelich F.
      • Korfmann G.
      • Sohrab S.
      • Sutharsan S.
      • Rademacher J.
      Incidence of patients with non-cystic fibrosis bronchiectasis in Germany - a healthcare insurance claims data analysis.
      ,
      • Quint J.K.
      • Millett E.R.
      • Joshi M.
      • Navaratnam V.
      • Thomas S.L.
      • Hurst J.R.
      • Smeeth L.
      • Brown J.S.
      Changes in the incidence, prevalence and mortality of bronchiectasis in the UK from 2004 to 2013: a population-based cohort study.
      ,
      • Seitz A.E.
      • Olivier K.N.
      • Adjemian J.
      • Holland S.M.
      • Prevots D.R.
      Trends in bronchiectasis among Medicare beneficiaries in the United States, 2000 to 2007.
      ]. In the United States (US), the average overall annual prevalence of BE in people aged ≥65 years increased by 8.75% yearly from 2000 through 2007 [
      • Seitz A.E.
      • Olivier K.N.
      • Adjemian J.
      • Holland S.M.
      • Prevots D.R.
      Trends in bronchiectasis among Medicare beneficiaries in the United States, 2000 to 2007.
      ] and was 701 per 100,000 during 2012–2014 [
      • Henkle E.
      • Chan B.
      • Curtis J.R.
      • Aksamit T.R.
      • Daley C.L.
      • Winthrop K.L.
      Characteristics and health-care utilization history of patients with bronchiectasis in US Medicare enrollees with prescription drug plans, 2006 to 2014.
      ]. This is lower than the reported prevalence in the United Kingdom (UK) (approximately 1200 per 100,000 adults aged >70 years in 2013) [
      • Quint J.K.
      • Millett E.R.
      • Joshi M.
      • Navaratnam V.
      • Thomas S.L.
      • Hurst J.R.
      • Smeeth L.
      • Brown J.S.
      Changes in the incidence, prevalence and mortality of bronchiectasis in the UK from 2004 to 2013: a population-based cohort study.
      ]. The actual prevalence of BE is likely to be greater, as there is a lack of universal screening and uncertainty about which is the predominant condition in patients with comorbid chronic obstructive pulmonary disease (COPD) [
      • Weycker D.
      • Hansen G.L.
      • Seifer F.D.
      Prevalence and incidence of noncystic fibrosis bronchiectasis among US adults in 2013.
      ].
      The hallmark symptoms described by patients include cough and sputum production; however, there is considerable individual heterogeneity in the symptomatology and disease severity. Some patients are asymptomatic, while others experience daily symptoms and frequent pulmonary exacerbations (PEx, defined later in the text) [
      • Flume P.A.
      • Chalmers J.D.
      • Olivier K.N.
      Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity.
      ]. For those patients, the impact of BE can be considerable. BE is estimated to have a health-related quality of life (HRQoL) and economic burden similar to that of COPD, and mortality rates are as high as 30% following severe PEx [
      • Quint J.K.
      • Millett E.R.
      • Joshi M.
      • Navaratnam V.
      • Thomas S.L.
      • Hurst J.R.
      • Smeeth L.
      • Brown J.S.
      Changes in the incidence, prevalence and mortality of bronchiectasis in the UK from 2004 to 2013: a population-based cohort study.
      ].1.
      There are no medications or therapies approved specifically for the treatment of BE except for the case of cystic fibrosis (CF) [
      • Flume P.A.
      • Chalmers J.D.
      • Olivier K.N.
      Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity.
      ]. CF is the approved indication for several therapies and CF transmembrane conductance regulator (CFTR) modulators are now available for the treatment of patients with CF whose specific genetic mutations are responsive [
      • Lopes-Pacheco M.
      CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine.
      ]. Despite – or possibly because of – the lack of approved therapies, there are no US-specific guidelines for managing BE. The exception is BE related to CF where there are numerous US guidelines [
      • Flume P.A.
      • Mogayzel Jr., P.J.
      • Robinson K.A.
      • Rosenblatt R.L.
      • Quittell L.
      • Marshall B.C.
      Clinical practice guidelines for pulmonary therapies committee, cystic fibrosis foundation pulmonary therapies committee, cystic fibrosis pulmonary guidelines: pulmonary complications: hemoptysis and pneumothorax.
      ,
      • Flume P.A.
      • Mogayzel Jr., P.J.
      • Robinson K.A.
      • Goss C.H.
      • Rosenblatt R.L.
      • Kuhn R.J.
      • Marshall B.C.
      Clinical practice guidelines for pulmonary therapies committee, cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations.
      ,
      • Flume P.A.
      • Robinson K.A.
      • O'Sullivan B.P.
      • Finder J.D.
      • Vender R.L.
      • Willey-Courand D.B.
      • White T.B.
      • Marshall B.C.
      Clinical practice guidelines for pulmonary therapies committee, cystic fibrosis pulmonary guidelines: airway clearance therapies.
      ,
      • Mogayzel Jr., P.J.
      • Naureckas E.T.
      • Robinson K.A.
      • Mueller G.
      • Hadjiliadis D.
      • Hoag J.B.
      • Lubsch L.
      • Hazle L.
      • Sabadosa K.
      • Marshall B.
      Pulmonary Clinical Practice Guidelines Committee, Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health.
      ,
      • Flume P.A.
      • O'Sullivan B.P.
      • Robinson K.A.
      • Goss C.H.
      • Mogayzel Jr., P.J.
      • Willey-Courand D.B.
      • Bujan J.
      • Finder J.
      • Lester M.
      • Quittell L.
      • Rosenblatt R.
      • Vender R.L.
      • Hazle L.
      • Sabadosa K.
      • Marshall B.
      P.T.C
      Cystic Fibrosis Foundation, Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health.
      ,
      • Floto R.A.
      • Olivier K.N.
      • Saiman L.
      • Daley C.L.
      • Herrmann J.L.
      • Nick J.A.
      • Noone P.G.
      • Bilton D.
      • Corris P.
      • Gibson R.L.
      • Hempstead S.E.
      • Koetz K.
      • Sabadosa K.A.
      • Sermet-Gaudelus I.
      • Smyth A.R.
      • van Ingen J.
      • Wallace R.J.
      • Winthrop K.L.
      • Marshall B.C.
      • Haworth C.S.
      US cystic fibrosis foundation, European cystic fibrosis society, US cystic fibrosis foundation and European cystic fibrosis society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis.
      ], but these may not be applicable for patients with BE due to other etiologies. There are guidelines for the management of BE in other countries and regions, including in the UK [
      • Hill A.T.
      • Sullivan A.L.
      • Chalmers J.D.
      • De Soyza A.
      • Elborn S.J.
      • Floto A.R.
      • Grillo L.
      • Gruffydd-Jones K.
      • Harvey A.
      • Haworth C.S.
      • Hiscocks E.
      • Hurst J.R.
      • Johnson C.
      • Kelleher P.W.
      • Bedi P.
      • Payne K.
      • Saleh H.
      • Screaton N.J.
      • Smith M.
      • Tunney M.
      • Whitters D.
      • Wilson R.
      • Loebinger M.R.
      British thoracic society guideline for bronchiectasis in adults.
      ], Australia/New Zealand [
      Thoracic Society of Australia and New Zealand
      Chronic Suppurative Lung Disease and Bronchiectasis in Children and Adults in Australia and New Zealand.
      ] and Europe [
      • Polverino E.
      • Goeminne P.C.
      • McDonnell M.J.
      • Aliberti S.
      • Marshall S.E.
      • Loebinger M.R.
      • Murris M.
      • Cantón R.
      • Torres A.
      • Dimakou K.
      • De Soyza A.
      • Hill A.T.
      • Haworth C.S.
      • Vendrell M.
      • Ringshausen F.C.
      • Subotic D.
      • Wilson R.
      • Vilaró J.
      • Stallberg B.
      • Welte T.
      • Rohde G.
      • Blasi F.
      • Elborn S.
      • Almagro M.
      • Timothy A.
      • Ruddy T.
      • Tonia T.
      • Rigau D.
      • Chalmers J.D.
      European Respiratory Society guidelines for the management of adult bronchiectasis.
      ]. However, many of the recommendations in these guidelines are based on low-quality or limited evidence [
      • Hill A.T.
      • Sullivan A.L.
      • Chalmers J.D.
      • De Soyza A.
      • Elborn S.J.
      • Floto A.R.
      • Grillo L.
      • Gruffydd-Jones K.
      • Harvey A.
      • Haworth C.S.
      • Hiscocks E.
      • Hurst J.R.
      • Johnson C.
      • Kelleher P.W.
      • Bedi P.
      • Payne K.
      • Saleh H.
      • Screaton N.J.
      • Smith M.
      • Tunney M.
      • Whitters D.
      • Wilson R.
      • Loebinger M.R.
      British thoracic society guideline for bronchiectasis in adults.
      ,
      Thoracic Society of Australia and New Zealand
      Chronic Suppurative Lung Disease and Bronchiectasis in Children and Adults in Australia and New Zealand.
      ,
      • Polverino E.
      • Goeminne P.C.
      • McDonnell M.J.
      • Aliberti S.
      • Marshall S.E.
      • Loebinger M.R.
      • Murris M.
      • Cantón R.
      • Torres A.
      • Dimakou K.
      • De Soyza A.
      • Hill A.T.
      • Haworth C.S.
      • Vendrell M.
      • Ringshausen F.C.
      • Subotic D.
      • Wilson R.
      • Vilaró J.
      • Stallberg B.
      • Welte T.
      • Rohde G.
      • Blasi F.
      • Elborn S.
      • Almagro M.
      • Timothy A.
      • Ruddy T.
      • Tonia T.
      • Rigau D.
      • Chalmers J.D.
      European Respiratory Society guidelines for the management of adult bronchiectasis.
      ].
      To help address these issues, an advisory board of experts was convened in the US in November 2020 with the goal of identifying the unmet needs in BE. A systematic review was not performed as part of this exercise as there were existing published reviews. Literature was made available to the panel as requested and consensus was derived regarding diagnostic and therapeutic questions. This manuscript is intended to relate the findings of the advisory panel and to propose research priorities to improve the evidence base for management of BE that best reflects the complexity of this condition.

      2. Pathophysiology of bronchiectasis

      The complex nature of BE has been the subject of much research in recent years, with attempts to classify it according to underlying etiology (endotype), clinical features (phenotype) or multidimensional approaches, such as the treatable traits concept [
      • Flume P.A.
      • Chalmers J.D.
      • Olivier K.N.
      Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity.
      ,
      • Girón Moreno R.M.
      • Martínez-Vergara A.
      • Martínez-García M.Á.
      Personalized approaches to bronchiectasis.
      ,
      • Boaventura R.
      • Sibila O.
      • Agusti A.
      • Chalmers J.D.
      Treatable traits in bronchiectasis.
      ].
      BE is the result of an intrinsic airway pathology attributed to a multitude of causes [
      • Flume P.A.
      • Chalmers J.D.
      • Olivier K.N.
      Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity.
      ]. Although some literature suggests that BE is idiopathic in approximately 40% of cases [
      • Lonni S.
      • Chalmers J.D.
      • Goeminne P.C.
      • McDonnell M.J.
      • Dimakou K.
      • De Soyza A.
      • Polverino E.
      • Van de Kerkhove C.
      • Rutherford R.
      • Davison J.
      • Rosales E.
      • Pesci A.
      • Restrepo M.I.
      • Torres A.
      • Aliberti S.
      Etiology of non–cystic fibrosis bronchiectasis in adults and its correlation to disease severity.
      ], this may merely indicate that a specific etiology has yet to be identified. The pathogenesis of BE is thought to be multifactorial, and a useful model of pathogenesis addresses the key consequences of airways disease (i.e. inflammation, infection, and abnormal airway mucociliary clearance) [
      • Polverino E.
      • Goeminne P.C.
      • McDonnell M.J.
      • Aliberti S.
      • Marshall S.E.
      • Loebinger M.R.
      • Murris M.
      • Cantón R.
      • Torres A.
      • Dimakou K.
      • De Soyza A.
      • Hill A.T.
      • Haworth C.S.
      • Vendrell M.
      • Ringshausen F.C.
      • Subotic D.
      • Wilson R.
      • Vilaró J.
      • Stallberg B.
      • Welte T.
      • Rohde G.
      • Blasi F.
      • Elborn S.
      • Almagro M.
      • Timothy A.
      • Ruddy T.
      • Tonia T.
      • Rigau D.
      • Chalmers J.D.
      European Respiratory Society guidelines for the management of adult bronchiectasis.
      ]. These factors often coexist in what has been described as a ‘vicious cycle’ (Fig. 1) [
      • Cole P.J.
      Inflammation: a two-edged sword--the model of bronchiectasis.
      ], but as these factors influence and exacerbate each other, the pathogenic process is perhaps better described as a ‘vortex’ contributing to disease progression and airway injury [
      • Flume P.A.
      • Chalmers J.D.
      • Olivier K.N.
      Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity.
      ].
      Fig. 1
      Fig. 1The ‘vortex’ of bronchiectasis progression [
      • Flume P.A.
      • Chalmers J.D.
      • Olivier K.N.
      Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity.
      ]. Reproduced with permission from Lancet 2018: 392: 880-890. Copyright© 2018 Elsevier Science & Technology Journals. We note that neutrophilic inflammation is beneficial in the setting of acute infection, but in the pathophysiology of bronchiectasis it is felt to be an abnormal neutrophilic response. More generally the role of inflammation is due to defects or abnormal innate and adaptive immune responses. In addition to persistent infection, the mere presence of bacteria (a.k.a colonization) may play a role in the disease process.
      Underlying immune dysregulation is present in a high proportion of cases [
      • Gao Y.H.
      • Guan W.J.
      • Liu S.X.
      • Wang L.
      • Cui J.J.
      • Chen R.C.
      • Zhang G.J.
      Aetiology of bronchiectasis in adults: a systematic literature review.
      ]. BE is a common manifestation of many immune disorders, and has been associated with autoimmune diseases, in particular rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) [
      • Flume P.A.
      • Chalmers J.D.
      • Olivier K.N.
      Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity.
      ]. BE can also be associated with inflammatory airways diseases, including advanced asthma, COPD and allergic bronchopulmonary aspergillosis (ABPA). Recent research has also examined various inflammatory markers and their association with BE disease heterogeneity, describing three main categories of inflammation in BE: eosinophilic and epithelial inflammation; systemic inflammation; and airway neutrophilic inflammation. It is likely these categories of inflammation represent different treatable traits that could be targeted with individualized treatment [
      • Shoemark A.
      • Smith A.
      • Giam A.
      • Dicker A.
      • Richardson H.
      • Huang J.T.J.
      • Keir H.R.
      • Finch S.
      • Aliberti S.
      • Sibila O.
      • Chalmers J.D.
      Inflammatory molecular endotypes in bronchiectasis.
      ].
      Another common feature in BE is the persistence of opportunistic pathogens in the airways. Bacteria (e.g. Pseudomonas aeruginosa, Haemophilus influenzae), fungi (e.g. Candida, Aspergillus) and mycobacteria (e.g. Mycobacterium avium complex) are commonly found in cultures of respiratory specimens. The role that these pathogens play in the cause of BE is unclear [
      • Aksamit T.R.
      • O'Donnell A.E.
      • Barker A.
      • Olivier K.N.
      • Winthrop K.L.
      • Daniels M.L.A.
      • Johnson M.
      • Eden E.
      • Griffith D.
      • Knowles M.
      • Metersky M.
      • Salathe M.
      • Thomashow B.
      • Tino G.
      • Turino G.
      • Carretta B.
      • Daley C.L.
      Bronchiectasis Research Registry Consortium
      Adult patients with bronchiectasis: a first look at the US Bronchiectasis Research Registry.
      ], but it is well known that tuberculosis (TB) can result in subsequent BE [
      • Gao Y.H.
      • Guan W.J.
      • Liu S.X.
      • Wang L.
      • Cui J.J.
      • Chen R.C.
      • Zhang G.J.
      Aetiology of bronchiectasis in adults: a systematic literature review.
      ]. In Asia and Africa, the prevalence of post-tuberculous BE is high, with a history of TB present in at least 60% of patients with BE [
      • Gao Y.H.
      • Guan W.J.
      • Liu S.X.
      • Wang L.
      • Cui J.J.
      • Chen R.C.
      • Zhang G.J.
      Aetiology of bronchiectasis in adults: a systematic literature review.
      ]. What is evident, however, is that the persistence of pathogens in the airways is associated with symptomatic consequences and is thought to contribute to progression of disease.
      Mucociliary clearance can be impaired in patients with BE [
      • Gao Y.H.
      • Guan W.J.
      • Liu S.X.
      • Wang L.
      • Cui J.J.
      • Chen R.C.
      • Zhang G.J.
      Aetiology of bronchiectasis in adults: a systematic literature review.
      ]. This can be caused by primary dysfunction of the cilia, or secondary to inflammatory damage or direct toxicity of bacterial proteins [
      • Pembridge T.
      • Chalmers J.D.
      Precision medicine in bronchiectasis.
      ]. The inability to effectively clear mucus leads to bacterial infection and further inflammation. The effectiveness of mucociliary clearance depends on ciliary beating and also on the quantity and characteristics of respiratory secretions. Such secretions in patients with BE have been shown to have properties (increased adhesiveness and purulence) that cause impaired mucociliary transport [
      • Tambascio J.
      • Lisboa R.M.
      • Passarelli Rde C.
      • Martinez J.A.
      • Gastaldi A.C.
      Adhesiveness and purulence of respiratory secretions: implications for mucociliary transport in patients with bronchiectasis.
      ].

      2.1 Describing phenotypes

      Describing phenotypes has become important in identifying patients who may be more responsive to specific treatments. To qualify as a phenotype, a characteristic or group of characteristics should be measurable, consistent over time and linked to clinically relevant outcomes [
      • Chalmers J.D.
      • Aliberti S.
      • Filonenko A.
      • Shteinberg M.
      • Goeminne P.C.
      • Hill A.T.
      • Fardon T.C.
      • Obradovic D.
      • Gerlinger C.
      • Sotgiu G.
      • Operschall E.
      • Rutherford R.M.
      • Dimakou K.
      • Polverino E.
      • De Soyza A.
      • McDonnell M.J.
      Characterization of the “frequent exacerbator phenotype” in bronchiectasis.
      ]. Attempts to describe clinical phenotypes for BE have used multidimensional clustering to group patients according to different characteristics [
      • Chalmers J.D.
      Bronchiectasis: phenotyping a complex disease.
      ]. Clinical features that have been identified include P. aeruginosa infection [
      • Aliberti S.
      • Lonni S.
      • Dore S.
      • McDonnell M.J.
      • Goeminne P.C.
      • Dimakou K.
      • Fardon T.C.
      • Rutherford R.
      • Pesci A.
      • Restrepo M.I.
      • Sotgiu G.
      • Chalmers J.D.
      Clinical phenotypes in adult patients with bronchiectasis.
      ], PEx frequency [
      • Chalmers J.D.
      • Aliberti S.
      • Filonenko A.
      • Shteinberg M.
      • Goeminne P.C.
      • Hill A.T.
      • Fardon T.C.
      • Obradovic D.
      • Gerlinger C.
      • Sotgiu G.
      • Operschall E.
      • Rutherford R.M.
      • Dimakou K.
      • Polverino E.
      • De Soyza A.
      • McDonnell M.J.
      Characterization of the “frequent exacerbator phenotype” in bronchiectasis.
      ], demographics (i.e. age and gender) [
      • Chalmers J.D.
      Bronchiectasis: phenotyping a complex disease.
      ], radiographic features (e.g. distribution, airway wall thickness), and presence or absence of sputum production [
      • Flume P.A.
      • Chalmers J.D.
      • Olivier K.N.
      Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity.
      ].
      In the US Bronchiectasis Research Registry, bacterial cultures of 33% of patients isolated P. aeruginosa [
      • Aksamit T.R.
      • O'Donnell A.E.
      • Barker A.
      • Olivier K.N.
      • Winthrop K.L.
      • Daniels M.L.A.
      • Johnson M.
      • Eden E.
      • Griffith D.
      • Knowles M.
      • Metersky M.
      • Salathe M.
      • Thomashow B.
      • Tino G.
      • Turino G.
      • Carretta B.
      • Daley C.L.
      Bronchiectasis Research Registry Consortium
      Adult patients with bronchiectasis: a first look at the US Bronchiectasis Research Registry.
      ]. Patients with P. aeruginosa infection have a three times greater rate of mortality, a marked increase in the risk of hospital admissions and reduced lung function compared to those without P. aeruginosa infection [
      • Finch S.
      • McDonnell M.J.
      • Abo-Leyah H.
      • Aliberti S.
      • Chalmers J.D.
      A comprehensive analysis of the impact of Pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis.
      ]. The presence of nontuberculous mycobacteria (NTM) may also define an important phenotype since it is such a frequent finding; one US study reported a confirmed NTM infection in 37% of patients with non-CF BE who were being investigated because of clinical suspicion of mycobacterial disease [
      • Mirsaeidi M.
      • Hadid W.
      • Ericsoussi B.
      • Rodgers D.
      • Sadikot R.T.
      Non-tuberculous mycobacterial disease is common in patients with non-cystic fibrosis bronchiectasis.
      ]. The frequent exacerbator phenotype (i.e. those with at least three PEx per year) is the strongest predictor of patients likely to have future exacerbations. It is also associated with a lower HRQoL, more hospital admissions, and greater mortality rates [
      • Chalmers J.D.
      • Aliberti S.
      • Filonenko A.
      • Shteinberg M.
      • Goeminne P.C.
      • Hill A.T.
      • Fardon T.C.
      • Obradovic D.
      • Gerlinger C.
      • Sotgiu G.
      • Operschall E.
      • Rutherford R.M.
      • Dimakou K.
      • Polverino E.
      • De Soyza A.
      • McDonnell M.J.
      Characterization of the “frequent exacerbator phenotype” in bronchiectasis.
      ]. Another identified phenotype is dry BE (defined as those with cough but without sputum production), which is associated with lower symptom scores, higher forced expiratory volume (FEV), and less long-term antibiotic treatment but similar mortality rates when compared with patients with BE associated with chronic infection or high sputum production [
      • Flume P.A.
      • Chalmers J.D.
      • Olivier K.N.
      Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity.
      ]. In addition, advances in interpretation of radiographic images through machine learning have identified objective means of quantifying the extent of disease and increased airway phlegm, which may correlate with disease activity [
      • Dournes G.
      • Hall C.S.
      • Willmering M.M.
      • Brody A.S.
      • Macey J.
      • Bui S.
      • Denis de Senneville B.
      • Berger P.
      • Laurent F.
      • Benlala I.
      • Woods J.C.
      Artificial intelligence in computed tomography for quantifying lung changes in the era of CFTR modulators.
      ,
      • Kuo W.
      • de Bruijne M.
      • Petersen J.
      • Nasserinejad K.
      • Ozturk H.
      • Chen Y.
      • Perez-Rovira A.
      • Tiddens H.
      Diagnosis of bronchiectasis and airway wall thickening in children with cystic fibrosis: objective airway-artery quantification.
      ,
      • Kuo W.
      • Perez-Rovira A.
      • Tiddens H.
      • de Bruijne M.
      Normal Chest CT study group, Airway tapering: an objective image biomarker for bronchiectasis.
      ]. Further identification of distinct phenotypes should allow greater insight into the characteristics, prognosis and management of BE.
      It has been argued that phenotype should not be considered independently from endotype, and thus the concept of treatable traits has also been applied to BE [
      • Boaventura R.
      • Sibila O.
      • Agusti A.
      • Chalmers J.D.
      Treatable traits in bronchiectasis.
      ]. In this approach, BE is classified into four broad categories (pulmonary, extrapulmonary, behavior/lifestyle and etiological treatable traits), based on the originally proposed airways disease treatable traits concept [
      • Agusti A.
      • Bel E.
      • Thomas M.
      • Vogelmeier C.
      • Brusselle G.
      • Holgate S.
      • Humbert M.
      • Jones P.
      • Gibson P.G.
      • Vestbo J.
      • Beasley R.
      • Pavord I.D.
      Treatable traits: toward precision medicine of chronic airway diseases.
      ]. These treatable traits may include, but are not limited to, underlying infections, immunodeficiencies, autoimmune conditions (e.g. IBD or connective tissue disease), rhinosinusitis and gastro-esophageal reflux disease (GERD) [
      • Boaventura R.
      • Sibila O.
      • Agusti A.
      • Chalmers J.D.
      Treatable traits in bronchiectasis.
      ]. This strategy has been suggested to offer a more holistic approach to BE management and could result in better outcomes for patients [
      • Boaventura R.
      • Sibila O.
      • Agusti A.
      • Chalmers J.D.
      Treatable traits in bronchiectasis.
      ]. However, the treatable traits hypothesis needs to be formally tested in clinical trials in order to prove its feasibility, efficacy and safety in clinical practice [
      • Boaventura R.
      • Sibila O.
      • Agusti A.
      • Chalmers J.D.
      Treatable traits in bronchiectasis.
      ].

      3. Current clinical approach to bronchiectasis

      3.1 Diagnosis

      Computed tomography (CT) of the chest, preferably high resolution (HRCT), is the gold standard for diagnosis [
      • Hill A.T.
      • Sullivan A.L.
      • Chalmers J.D.
      • De Soyza A.
      • Elborn S.J.
      • Floto A.R.
      • Grillo L.
      • Gruffydd-Jones K.
      • Harvey A.
      • Haworth C.S.
      • Hiscocks E.
      • Hurst J.R.
      • Johnson C.
      • Kelleher P.W.
      • Bedi P.
      • Payne K.
      • Saleh H.
      • Screaton N.J.
      • Smith M.
      • Tunney M.
      • Whitters D.
      • Wilson R.
      • Loebinger M.R.
      British thoracic society guideline for bronchiectasis in adults.
      ]. The definition of BE is generally described as an enlargement of the airway, greater than the adjacent artery (e.g. airway to artery ration >1.1), or a lack of tapering of the airway towards the periphery. There is a widely recognized delay to diagnosis for patients with BE [
      • Ameratunga R.
      • Jordan A.
      • Cavadino A.
      • Ameratunga S.
      • Hills T.
      • Steele R.
      • Hurst M.
      • McGettigan B.
      • Chua I.
      • Brewerton M.
      • Kennedy N.
      • Koopmans W.
      • Ahn Y.
      • Barker R.
      • Allan C.
      • Storey P.
      • Slade C.
      • Baker A.
      • Huang L.
      • Woon S.T.
      Bronchiectasis is associated with delayed diagnosis and adverse outcomes in the New Zealand Common Variable Immunodeficiency Disorders cohort study.
      ,
      • Girón R.M.
      • de Gracia Roldán J.
      • Olveira C.
      • Vendrell M.
      • Martínez-García M.Á.
      • de la Rosa D.
      • Máiz L.
      • Ancochea J.
      • Vázquez L.
      • Borderías L.
      • Polverino E.
      • Martínez-Moragón E.
      • Rajas O.
      • Soriano J.B.
      Sex bias in diagnostic delay in bronchiectasis: an analysis of the Spanish Historical Registry of Bronchiectasis.
      ,
      • Shoemark A.
      • Ozerovitch L.
      • Wilson R.
      Aetiology in adult patients with bronchiectasis.
      ]. Over 90% of patients with BE present with cough and 75% with sputum, but these symptoms commonly occur in a range of conditions, and it can be difficult for physicians to identify patients who may need a work-up for BE. Defining the characteristics of patients who should undergo low dose chest CT is key to making an earlier diagnosis. Diagnostic clues that a patient may have BE include persistent unexplained cough especially if productive of purulent sputum, recurring bronchitis or infection, hemoptysis, or relentless fatigue of unknown cause [
      • Smith M.P.
      Diagnosis and management of bronchiectasis.
      ]. A persistent cough in patients with risk factors for BE, such as RA or IBD, should also prompt investigation [
      • Hill A.T.
      • Sullivan A.L.
      • Chalmers J.D.
      • De Soyza A.
      • Elborn S.J.
      • Floto A.R.
      • Grillo L.
      • Gruffydd-Jones K.
      • Harvey A.
      • Haworth C.S.
      • Hiscocks E.
      • Hurst J.R.
      • Johnson C.
      • Kelleher P.W.
      • Bedi P.
      • Payne K.
      • Saleh H.
      • Screaton N.J.
      • Smith M.
      • Tunney M.
      • Whitters D.
      • Wilson R.
      • Loebinger M.R.
      British thoracic society guideline for bronchiectasis in adults.
      ].

      3.1.1 Additional patient evaluation

      Following radiographic diagnosis, current guidelines suggest a thorough medical history and a panel of further investigations to identify potential causes or comorbidities, especially if there are disease-specific therapies, as well as to establish other treatable aspects of the individual's condition (e.g. infection) [
      • Hill A.T.
      • Sullivan A.L.
      • Chalmers J.D.
      • De Soyza A.
      • Elborn S.J.
      • Floto A.R.
      • Grillo L.
      • Gruffydd-Jones K.
      • Harvey A.
      • Haworth C.S.
      • Hiscocks E.
      • Hurst J.R.
      • Johnson C.
      • Kelleher P.W.
      • Bedi P.
      • Payne K.
      • Saleh H.
      • Screaton N.J.
      • Smith M.
      • Tunney M.
      • Whitters D.
      • Wilson R.
      • Loebinger M.R.
      British thoracic society guideline for bronchiectasis in adults.
      ]. Guidelines classify investigations as either necessary or discretionary testing in patients with a new diagnosis of BE but there is considerable variance in these recommendations (Table 1) [
      Thoracic Society of Australia and New Zealand
      Chronic Suppurative Lung Disease and Bronchiectasis in Children and Adults in Australia and New Zealand.
      ].
      Table 1Guideline recommendations for testing patients with a new diagnosis of bronchiectasis.
      Testing areaERS (2017) [
      • Polverino E.
      • Goeminne P.C.
      • McDonnell M.J.
      • Aliberti S.
      • Marshall S.E.
      • Loebinger M.R.
      • Murris M.
      • Cantón R.
      • Torres A.
      • Dimakou K.
      • De Soyza A.
      • Hill A.T.
      • Haworth C.S.
      • Vendrell M.
      • Ringshausen F.C.
      • Subotic D.
      • Wilson R.
      • Vilaró J.
      • Stallberg B.
      • Welte T.
      • Rohde G.
      • Blasi F.
      • Elborn S.
      • Almagro M.
      • Timothy A.
      • Ruddy T.
      • Tonia T.
      • Rigau D.
      • Chalmers J.D.
      European Respiratory Society guidelines for the management of adult bronchiectasis.
      ]
      Minimum recommended investigations.
      BTS (2019) [
      • Hill A.T.
      • Sullivan A.L.
      • Chalmers J.D.
      • De Soyza A.
      • Elborn S.J.
      • Floto A.R.
      • Grillo L.
      • Gruffydd-Jones K.
      • Harvey A.
      • Haworth C.S.
      • Hiscocks E.
      • Hurst J.R.
      • Johnson C.
      • Kelleher P.W.
      • Bedi P.
      • Payne K.
      • Saleh H.
      • Screaton N.J.
      • Smith M.
      • Tunney M.
      • Whitters D.
      • Wilson R.
      • Loebinger M.R.
      British thoracic society guideline for bronchiectasis in adults.
      ]
      TSANZ (2014) [
      Thoracic Society of Australia and New Zealand
      Chronic Suppurative Lung Disease and Bronchiectasis in Children and Adults in Australia and New Zealand.
      ]
      Minimum recommended investigations.
      Blood cell counts
       Differential blood countX
       Full blood countXX
      Immune deficiency
       Serum IgGXXX
       Serum IgAXXX
       Serum IgMXXX
      S. pneumoniae-specific antibody testingX
      ABPA
       Serum total IgEXXX
       Skin prick test to AspergillusXX
       Aspergillus serologyXX
      Cystic fibrosis
       Sweat testX (in patients with clinical features)X (in patients with clinical features)X (selected adults
      Adults aged <50 years or in those with episodes of pancreatitis, bowel obstruction, heat prostration, and in patients with coexisting liver disease or male infertility.
      )
       CFTR gene mutation analysis
      There are >2000 mutations known to occur in CFTR. The guidelines did not recommend specific analyses, but discussion with a local genetic counselor would be advised.
      XXX
      PCD
       Testing in patients with clinical features
      There are guidelines for the diagnosis of PCD [40].
      XX
      Pulmonary function
       SpirometryXX
       Lung volumesXX
      Microbiology
       Culture airway secretions, including mycobacteriaXX
      Rheumatologic disease
       Rheumatoid factorX
       Antinuclear antibodiesX
      Alpha 1 antitrypsin deficiency (in patients with coexisting basal panacinar emphysema)X
      ABPA: allergic bronchopulmonary aspergillosis; BTS: British Thoracic Society; CF: cystic fibrosis; ERS: European Respiratory Society; Ig: immunoglobulin; NTM: nontuberculous mycobacteria; PCD: primary ciliary dyskinesia; TSANZ: Thoracic Society of Australia and New Zealand.
      a Minimum recommended investigations.
      b Adults aged <50 years or in those with episodes of pancreatitis, bowel obstruction, heat prostration, and in patients with coexisting liver disease or male infertility.
      c There are >2000 mutations known to occur in CFTR. The guidelines did not recommend specific analyses, but discussion with a local genetic counselor would be advised.
      d There are guidelines for the diagnosis of PCD [
      • Shapiro A.J.
      • Davis S.D.
      • Polineni D.
      • Manion M.
      • Rosenfeld M.
      • Dell S.D.
      • Chilvers M.A.
      • Ferkol T.W.
      • Zariwala M.A.
      • D Sagel S.
      • Josephson M.
      • Morgan L.
      • Yilmaz O.
      • Olivier K.N.
      • Milla C.
      • Pittman J.E.
      • A Daniels M.L.
      • Jones M.H.
      • Janahi I.A.
      • Ware S.M.
      • Daniel S.J.
      • Cooper M.L.
      • Nogee L.M.
      • Anton B.
      • Eastvold T.
      • Ehrne L.
      • Guadagno E.
      • Knowles M.R.
      • Leigh M.W.
      • Lavergne V.
      American thoracic society assembly on pediatrics, diagnosis of primary ciliary dyskinesia, an official American thoracic society clinical practice guideline.
      ].

      3.2 Therapeutic options

      We note that not all radiographically-defined bronchiectasis is clinically relevant, such that not all need therapy. For those who do, current management of BE has three main components: clearance of airway secretions, identifying (when possible) and treating the underlying condition and comorbidities, and (when indicated) treatment of airway pathogens. Because of the heterogeneity of presenting symptoms of BE, the goals of treatment will differ between patients, but often include reducing symptoms, improving HRQoL, preventing PEx and hospital admissions, preserving lung function, and, ultimately, prolonging life [
      • Chalmers J.D.
      • Restrepo M.I.
      Bronchiectasis management: the state of the union.
      ]. As noted earlier we lack therapies approved specifically for BE, so symptomatic treatment options developed and approved for CF are often implemented in the management of BE complications.

      3.2.1 Airway clearance

      Although studies that offer evidence of benefit from airway clearance therapies suffer from small sample sizes and limitations of study design, airway clearance therapies are generally accepted as being beneficial [
      • Lee A.L.
      • Burge A.T.
      • Holland A.E.
      Airway clearance techniques for bronchiectasis.
      ] and recommended in bronchiectasis guidelines [
      • Hill A.T.
      • Sullivan A.L.
      • Chalmers J.D.
      • De Soyza A.
      • Elborn S.J.
      • Floto A.R.
      • Grillo L.
      • Gruffydd-Jones K.
      • Harvey A.
      • Haworth C.S.
      • Hiscocks E.
      • Hurst J.R.
      • Johnson C.
      • Kelleher P.W.
      • Bedi P.
      • Payne K.
      • Saleh H.
      • Screaton N.J.
      • Smith M.
      • Tunney M.
      • Whitters D.
      • Wilson R.
      • Loebinger M.R.
      British thoracic society guideline for bronchiectasis in adults.
      ,
      • Polverino E.
      • Goeminne P.C.
      • McDonnell M.J.
      • Aliberti S.
      • Marshall S.E.
      • Loebinger M.R.
      • Murris M.
      • Cantón R.
      • Torres A.
      • Dimakou K.
      • De Soyza A.
      • Hill A.T.
      • Haworth C.S.
      • Vendrell M.
      • Ringshausen F.C.
      • Subotic D.
      • Wilson R.
      • Vilaró J.
      • Stallberg B.
      • Welte T.
      • Rohde G.
      • Blasi F.
      • Elborn S.
      • Almagro M.
      • Timothy A.
      • Ruddy T.
      • Tonia T.
      • Rigau D.
      • Chalmers J.D.
      European Respiratory Society guidelines for the management of adult bronchiectasis.
      ]. Airway clearance refers specifically to techniques that mobilize and remove abnormal airway material composed of bacteria and inflammatory cells. It is thought that these techniques, in conjunction with aerosol medications, alter the viscoelastic properties of airway phlegm [
      • Lee A.L.
      • Burge A.T.
      • Holland A.E.
      Airway clearance techniques for bronchiectasis.
      ].
      Airway clearance is achieved using a variety of breathing techniques and clearance devices [
      • Flume P.A.
      • Robinson K.A.
      • O'Sullivan B.P.
      • Finder J.D.
      • Vender R.L.
      • Willey-Courand D.B.
      • White T.B.
      • Marshall B.C.
      Clinical practice guidelines for pulmonary therapies committee, cystic fibrosis pulmonary guidelines: airway clearance therapies.
      ]. The suitability of individual techniques depends on the patient, but airway clearance therapies should be performed on a regular basis [
      • Flume P.A.
      • Robinson K.A.
      • O'Sullivan B.P.
      • Finder J.D.
      • Vender R.L.
      • Willey-Courand D.B.
      • White T.B.
      • Marshall B.C.
      Clinical practice guidelines for pulmonary therapies committee, cystic fibrosis pulmonary guidelines: airway clearance therapies.
      ]. Training is conducted by respiratory or physical therapists, nurses, or when these are not available, by clinicians themselves. Educational resources (e.g. websites) that were developed by qualified healthcare professionals are available, including videos with instructions on airway clearance techniques for better patient engagement (see the Individual Management of Patient Airway Clearance Therapy [https://impact-be.com/] and the Bronchiectasis Toolbox [https://bronchiectasis.com.au/] websites).
      Medications that may help with airway clearance include mucoactive agents and bronchodilators. The European Respiratory Society (ERS) and British Thoracic Society (BTS) guidelines suggest long-term mucoactive treatment (e.g. nebulized hypertonic saline) in adult patients with BE if standard airway clearance techniques alone fail to control symptoms [
      • Hill A.T.
      • Sullivan A.L.
      • Chalmers J.D.
      • De Soyza A.
      • Elborn S.J.
      • Floto A.R.
      • Grillo L.
      • Gruffydd-Jones K.
      • Harvey A.
      • Haworth C.S.
      • Hiscocks E.
      • Hurst J.R.
      • Johnson C.
      • Kelleher P.W.
      • Bedi P.
      • Payne K.
      • Saleh H.
      • Screaton N.J.
      • Smith M.
      • Tunney M.
      • Whitters D.
      • Wilson R.
      • Loebinger M.R.
      British thoracic society guideline for bronchiectasis in adults.
      ,
      • Polverino E.
      • Goeminne P.C.
      • McDonnell M.J.
      • Aliberti S.
      • Marshall S.E.
      • Loebinger M.R.
      • Murris M.
      • Cantón R.
      • Torres A.
      • Dimakou K.
      • De Soyza A.
      • Hill A.T.
      • Haworth C.S.
      • Vendrell M.
      • Ringshausen F.C.
      • Subotic D.
      • Wilson R.
      • Vilaró J.
      • Stallberg B.
      • Welte T.
      • Rohde G.
      • Blasi F.
      • Elborn S.
      • Almagro M.
      • Timothy A.
      • Ruddy T.
      • Tonia T.
      • Rigau D.
      • Chalmers J.D.
      European Respiratory Society guidelines for the management of adult bronchiectasis.
      ]. Dornase alfa is often used to treat bronchiectasis in patients with CF but should be used with caution in those without CF; a previous study demonstrated no clinical benefit and perhaps some harm [
      • O'Donnell A.E.
      • Barker A.F.
      • Ilowite J.S.
      • Fick R.B.
      Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase Study Group.
      ]. Bronchodilators may be beneficial in patients with significant breathlessness, but are not routinely recommended for other patients and may not benefit patients without bronchial reversibility. If bronchodilators are included as one of multiple inhalation therapies, guidelines generally recommend that bronchodilators should be administered first (i.e. prior to other inhaled agents), although this is based on expert opinion and not specific evidence [
      • Hill A.T.
      • Sullivan A.L.
      • Chalmers J.D.
      • De Soyza A.
      • Elborn S.J.
      • Floto A.R.
      • Grillo L.
      • Gruffydd-Jones K.
      • Harvey A.
      • Haworth C.S.
      • Hiscocks E.
      • Hurst J.R.
      • Johnson C.
      • Kelleher P.W.
      • Bedi P.
      • Payne K.
      • Saleh H.
      • Screaton N.J.
      • Smith M.
      • Tunney M.
      • Whitters D.
      • Wilson R.
      • Loebinger M.R.
      British thoracic society guideline for bronchiectasis in adults.
      ,
      • Polverino E.
      • Goeminne P.C.
      • McDonnell M.J.
      • Aliberti S.
      • Marshall S.E.
      • Loebinger M.R.
      • Murris M.
      • Cantón R.
      • Torres A.
      • Dimakou K.
      • De Soyza A.
      • Hill A.T.
      • Haworth C.S.
      • Vendrell M.
      • Ringshausen F.C.
      • Subotic D.
      • Wilson R.
      • Vilaró J.
      • Stallberg B.
      • Welte T.
      • Rohde G.
      • Blasi F.
      • Elborn S.
      • Almagro M.
      • Timothy A.
      • Ruddy T.
      • Tonia T.
      • Rigau D.
      • Chalmers J.D.
      European Respiratory Society guidelines for the management of adult bronchiectasis.
      ].

      3.2.2 Treatment of underlying conditions causing BE and comorbidities

      If an underlying cause is identified and treatable, then specific therapy is warranted (Fig. 2). Examples include intravenous immunoglobulin (Ig) replacement in IgG-deficient patients, corticosteroids and/or anti-fungal therapy for ABPA; alpha 1 antitrypsin replacement (if available), optimized anti-inflammatory therapy for patients with autoimmune inflammatory conditions, such as RA or IBD; allergy medications or intranasal steroids for rhinosinusitis; and conservative measures and possible proton pump inhibitors for GERD [
      • Hill A.T.
      • Sullivan A.L.
      • Chalmers J.D.
      • De Soyza A.
      • Elborn S.J.
      • Floto A.R.
      • Grillo L.
      • Gruffydd-Jones K.
      • Harvey A.
      • Haworth C.S.
      • Hiscocks E.
      • Hurst J.R.
      • Johnson C.
      • Kelleher P.W.
      • Bedi P.
      • Payne K.
      • Saleh H.
      • Screaton N.J.
      • Smith M.
      • Tunney M.
      • Whitters D.
      • Wilson R.
      • Loebinger M.R.
      British thoracic society guideline for bronchiectasis in adults.
      ,
      • Boaventura R.
      • Sibila O.
      • Agusti A.
      • Chalmers J.D.
      Treatable traits in bronchiectasis.
      ]. GERD possibly impacts the severity of BE via recurrent pulmonary microaspiration [
      • McDonnell M.J.
      • O'Toole D.
      • Ward C.
      • Pearson J.P.
      • Lordan J.L.
      • De Soyza A.
      • Loebinger M.
      • Chalmers J.D.
      • Laffey J.G.
      • Rutherford R.M.
      A qualitative synthesis of gastro-oesophageal reflux in bronchiectasis: current understanding and future risk.
      ], and GERD symptoms in patients with BE should be treated according to existing National Institute for Health and Care Excellence guidelines [
      National Institute for Health and Care Excellence
      Clinical Guideline [CG184]. Gastro-Oesophageal Reflux Disease and Dyspepsia in Adults: Investigation and Management.
      ].
      Fig. 2
      Fig. 2Suggested approach to BE management according to pulmonary and non-pulmonary factors, infection, and inflammation [
      • Flume P.A.
      • Chalmers J.D.
      • Olivier K.N.
      Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity.
      ,
      • Boaventura R.
      • Sibila O.
      • Agusti A.
      • Chalmers J.D.
      Treatable traits in bronchiectasis.
      ,
      • Shoemark A.
      • Smith A.
      • Giam A.
      • Dicker A.
      • Richardson H.
      • Huang J.T.J.
      • Keir H.R.
      • Finch S.
      • Aliberti S.
      • Sibila O.
      • Chalmers J.D.
      Inflammatory molecular endotypes in bronchiectasis.
      ,
      • Chalmers J.D.
      • Sethi S.
      Raising awareness of bronchiectasis in primary care: overview of diagnosis and management strategies in adults.
      ,
      • Chen P.
      • Zhou G.
      • Lin J.
      • Li L.
      • Zeng Z.
      • Chen M.
      • Zhang S.
      Serum biomarkers for inflammatory bowel disease.
      ]. ABPA: allergic bronchopulmonary aspergillosis; GERD: gastro-esophageal reflux disease; IBD: irritable bowel disease; Ig: immunoglobulin; NTM: nontuberculosis mycobacteria; PPI: proton pump inhibitor.
      Particular care should be made to confirm a diagnosis of asthma or COPD before prescribing inhaled corticosteroids (ICS), as these agents have not shown benefits for patients with BE and some have suggested there is increased risk of harm, perhaps in part by increasing the risk of NTM infection, as well as higher rates of Pseudomonas infection and acute PEx [
      • Håkansson K.E.J.
      • Fjaellegaard K.
      • Browatzki A.
      • Dönmez Sin M.
      • Ulrik C.S.
      Inhaled corticosteroid therapy in bronchiectasis is associated with all-cause mortality: a prospective cohort study.
      ].
      Exacerbating conditions, such as viral infections and pneumonia, should be prevented (where possible) through vaccination. Comorbidities that are known to adversely affect outcomes in patients with BE, such as cardiovascular disorders, GERD, psychological illnesses, pulmonary hypertension, cognitive impairment and COPD, should be evaluated and (where possible) treated [
      • McDonnell M.J.
      • Aliberti S.
      • Goeminne P.C.
      • Restrepo M.I.
      • Finch S.
      • Pesci A.
      • Dupont L.J.
      • Fardon T.C.
      • Wilson R.
      • Loebinger M.R.
      • Skrbic D.
      • Obradovic D.
      • De Soyza A.
      • Ward C.
      • Laffey J.G.
      • Rutherford R.M.
      • Chalmers J.D.
      Comorbidities and the risk of mortality in patients with bronchiectasis: an international multicentre cohort study.
      ]. Pulmonary rehabilitation, involving appropriate exercise and education, has been shown to improve exercise parameters and respiratory symptoms in patients with BE [
      • Patel S.
      • Cole A.D.
      • Nolan C.M.
      • Barker R.E.
      • Jones S.E.
      • Kon S.
      • Cairn J.
      • Loebinger M.
      • Wilson R.
      • Man W.D.
      Pulmonary rehabilitation in bronchiectasis: a propensity-matched study.
      ].

      3.2.3 Pulmonary exacerbations (PEx)

      PEx are defined as worsening of symptoms greater than the normal day-to-day variation [
      • Chalmers J.D.
      • Aliberti S.
      • Filonenko A.
      • Shteinberg M.
      • Goeminne P.C.
      • Hill A.T.
      • Fardon T.C.
      • Obradovic D.
      • Gerlinger C.
      • Sotgiu G.
      • Operschall E.
      • Rutherford R.M.
      • Dimakou K.
      • Polverino E.
      • De Soyza A.
      • McDonnell M.J.
      Characterization of the “frequent exacerbator phenotype” in bronchiectasis.
      ], or more specifically, deterioration in three or more of the following key signs or symptoms for ≥48 h: cough; sputum volume and/or consistency; sputum purulence; breathlessness and/or exercise intolerance; fatigue and/or malaise; and hemoptysis; AND a clinician determines that a change in BE treatment is required [
      • Hill A.T.
      • Haworth C.S.
      • Aliberti S.
      • Barker A.
      • Blasi F.
      • Boersma W.
      • Chalmers J.D.
      • De Soyza A.
      • Dimakou K.
      • Elborn J.S.
      • Feldman C.
      • Flume P.
      • Goeminne P.C.
      • Loebinger M.R.
      • Menendez R.
      • Morgan L.
      • Murris M.
      • Polverino E.
      • Quittner A.
      • Ringshausen F.C.
      • Tino G.
      • Torres A.
      • Vendrell M.
      • Welte T.
      • Wilson R.
      • Wong C.
      • O'Donnell A.
      • Aksamit T.
      EMBARC/BRR definitions working group, Pulmonary exacerbation in adults with bronchiectasis: a consensus definition for clinical research.
      ]. The burden of PEx is considerable in terms of both its impact on patients and the economic costs [
      • Goeminne P.C.
      • Hernandez F.
      • Diel R.
      • Filonenko A.
      • Hughes R.
      • Juelich F.
      • Solomon G.M.
      • Upton A.
      • Wichmann K.
      • Xu W.
      • Chalmers J.D.
      The economic burden of bronchiectasis - known and unknown: a systematic review.
      ]. In patients with CF, PEx are associated with a marked reduction in HRQoL, with full recovery of physical functioning and vitality taking several weeks [
      • Flume P.A.
      • Suthoff E.D.
      • Kosinski M.
      • Marigowda G.
      • Quittner A.L.
      Measuring recovery in health-related quality of life during and after pulmonary exacerbations in patients with cystic fibrosis.
      ]; a substantial portion of patients do not recover pulmonary function after an exacerbation. A prospective observational study of subjects with BE (but not CF) assessing lung function, symptoms and inflammation revealed a similar long recovery time for patient-reported symptoms after PEx [
      • Brill S.E.
      • Patel A.R.
      • Singh R.
      • Mackay A.J.
      • Brown J.S.
      • Hurst J.R.
      Lung function, symptoms and inflammation during exacerbations of non-cystic fibrosis bronchiectasis: a prospective observational cohort study.
      ]. This is consistent with clinical experience and is explained by the fact that PEx are systemic events that require time to resolve.
      The severity of PEx is difficult to quantify; hospitalization has often been used as a marker of severity; however, there may be many reasons for hospitalization and not all may imply a more severe event. Both frequency of PEx and hospitalizations are reflected in the Bronchiectasis Severity Index (BSI), which has been validated to predict long-term prognosis [
      • Chalmers J.D.
      • Goeminne P.
      • Aliberti S.
      • McDonnell M.J.
      • Lonni S.
      • Davidson J.
      • Poppelwell L.
      • Salih W.
      • Pesci A.
      • Dupont L.J.
      • Fardon T.C.
      • De Soyza A.
      • Hill A.T.
      The bronchiectasis severity index. An international derivation and validation study.
      ].

      3.2.4 Antimicrobial treatment

      Persistent infection is a common feature in BE, so it is important to perform surveillance cultures for bacteria, fungi and mycobacteria. The presence of pathogens does not always mandate treatment, but knowledge of their presence can inform current or future treatment decisions. Antimicrobial treatment can be used for short periods (e.g. treatment of PEx) and, in some cases, chronic long-term suppressive therapy to reduce the risk of PEx [
      • Polverino E.
      • Goeminne P.C.
      • McDonnell M.J.
      • Aliberti S.
      • Marshall S.E.
      • Loebinger M.R.
      • Murris M.
      • Cantón R.
      • Torres A.
      • Dimakou K.
      • De Soyza A.
      • Hill A.T.
      • Haworth C.S.
      • Vendrell M.
      • Ringshausen F.C.
      • Subotic D.
      • Wilson R.
      • Vilaró J.
      • Stallberg B.
      • Welte T.
      • Rohde G.
      • Blasi F.
      • Elborn S.
      • Almagro M.
      • Timothy A.
      • Ruddy T.
      • Tonia T.
      • Rigau D.
      • Chalmers J.D.
      European Respiratory Society guidelines for the management of adult bronchiectasis.
      ].
      Short-term antimicrobial treatment is generally reserved for patients with acute PEx and antibiotics should target pathogens known to be present in respiratory cultures [
      • Hill A.T.
      • Sullivan A.L.
      • Chalmers J.D.
      • De Soyza A.
      • Elborn S.J.
      • Floto A.R.
      • Grillo L.
      • Gruffydd-Jones K.
      • Harvey A.
      • Haworth C.S.
      • Hiscocks E.
      • Hurst J.R.
      • Johnson C.
      • Kelleher P.W.
      • Bedi P.
      • Payne K.
      • Saleh H.
      • Screaton N.J.
      • Smith M.
      • Tunney M.
      • Whitters D.
      • Wilson R.
      • Loebinger M.R.
      British thoracic society guideline for bronchiectasis in adults.
      ,
      • Polverino E.
      • Goeminne P.C.
      • McDonnell M.J.
      • Aliberti S.
      • Marshall S.E.
      • Loebinger M.R.
      • Murris M.
      • Cantón R.
      • Torres A.
      • Dimakou K.
      • De Soyza A.
      • Hill A.T.
      • Haworth C.S.
      • Vendrell M.
      • Ringshausen F.C.
      • Subotic D.
      • Wilson R.
      • Vilaró J.
      • Stallberg B.
      • Welte T.
      • Rohde G.
      • Blasi F.
      • Elborn S.
      • Almagro M.
      • Timothy A.
      • Ruddy T.
      • Tonia T.
      • Rigau D.
      • Chalmers J.D.
      European Respiratory Society guidelines for the management of adult bronchiectasis.
      ]. If not known, then coverage of pathogens commonly found in BE, such as P. aeruginosa or H. influenzae, is recommended. Other pathogens that are increasingly reported in BE include Moraxella catarrhalis, Streptococcus pneumoniae, Burkholderia and Stenotrophomonas spp [
      • Green H.
      • Jones A.M.
      The microbiome and emerging pathogens in cystic fibrosis and non-cystic fibrosis bronchiectasis.
      ]. Susceptibility testing may be useful for guiding treatment decisions, but these results are sometimes viewed with a degree of skepticism; susceptibility testing has not demonstrated to be predictive of clinical outcomes in patients with CF [
      • Somayaji R.
      • Parkins M.D.
      • Shah A.
      • Martiniano S.L.
      • Tunney M.M.
      • Kahle J.S.
      • Waters V.J.
      • Elborn J.S.
      • Bell S.C.
      • Flume P.A.
      • VanDevanter D.R.
      Antimicrobial Resistance in Cystic Fibrosis International Working Group, Antimicrobial susceptibility testing (AST) and associated clinical outcomes in individuals with cystic fibrosis: a systematic review.
      ], but it is unknown if this would be the same for BE unrelated to CF. The ERS guidelines recommend 14 days of antimicrobials for the treatment of acute PEx [
      • Polverino E.
      • Goeminne P.C.
      • McDonnell M.J.
      • Aliberti S.
      • Marshall S.E.
      • Loebinger M.R.
      • Murris M.
      • Cantón R.
      • Torres A.
      • Dimakou K.
      • De Soyza A.
      • Hill A.T.
      • Haworth C.S.
      • Vendrell M.
      • Ringshausen F.C.
      • Subotic D.
      • Wilson R.
      • Vilaró J.
      • Stallberg B.
      • Welte T.
      • Rohde G.
      • Blasi F.
      • Elborn S.
      • Almagro M.
      • Timothy A.
      • Ruddy T.
      • Tonia T.
      • Rigau D.
      • Chalmers J.D.
      European Respiratory Society guidelines for the management of adult bronchiectasis.
      ]. This is based on very little evidence, although there is a pediatric study that used 14 days of antibiotic treatment [
      • Goyal V.
      • Grimwood K.
      • Ware R.S.
      • Byrnes C.A.
      • Morris P.S.
      • Masters I.B.
      • McCallum G.B.
      • Binks M.J.
      • Smith-Vaughan H.
      • O'Grady K.F.
      • Champion A.
      • Buntain H.M.
      • Schultz A.
      • Chatfield M.
      • Torzillo P.J.
      • Chang A.B.
      Efficacy of oral amoxicillin-clavulanate or azithromycin for non-severe respiratory exacerbations in children with bronchiectasis (BEST-1): a multicentre, three-arm, double-blind, randomised placebo-controlled trial.
      ], and more recently a study which used bacterial load to inform even shorter durations, again comparing to 14 days of treatment [
      • Bedi P.
      • Cartlidge M.K.
      • Zhang Y.
      • Turnbull K.
      • Donaldson S.
      • Clarke A.
      • Crowe J.
      • Campbell K.
      • Graham C.
      • Franguylan R.
      • Rossi A.G.
      • Hill A.T.
      Feasibility of shortening intravenous antibiotic therapy for bronchiectasis based on bacterial load: a proof-of-concept randomised controlled trial.
      ]. Although these studies do not provide sufficient evidence for a specific duration, a study designed to test treatment durations conducted in CF exacerbations appears to support the recommendation for 14 days of antibiotic treatment [
      • Goss C.H.
      • Heltshe S.L.
      • West N.E.
      • Skalland M.
      • Sanders D.B.
      • Jain R.
      • Barto T.L.
      • Fogarty B.
      • Marshall B.C.
      • VanDevanter D.R.
      • Flume P.A.
      STOP2 Investigators, A randomized clinical trial of antimicrobial duration for cystic fibrosis pulmonary exacerbation treatment.
      ].
      Patients who have frequent PEx may benefit from chronic antimicrobial treatment. The ERS guidelines define frequent PEx as at least three events per year [
      • Polverino E.
      • Goeminne P.C.
      • McDonnell M.J.
      • Aliberti S.
      • Marshall S.E.
      • Loebinger M.R.
      • Murris M.
      • Cantón R.
      • Torres A.
      • Dimakou K.
      • De Soyza A.
      • Hill A.T.
      • Haworth C.S.
      • Vendrell M.
      • Ringshausen F.C.
      • Subotic D.
      • Wilson R.
      • Vilaró J.
      • Stallberg B.
      • Welte T.
      • Rohde G.
      • Blasi F.
      • Elborn S.
      • Almagro M.
      • Timothy A.
      • Ruddy T.
      • Tonia T.
      • Rigau D.
      • Chalmers J.D.
      European Respiratory Society guidelines for the management of adult bronchiectasis.
      ]. There is high-quality evidence for long-term macrolide therapy in patients with BE in reducing the frequency of PEx and improving HRQoL [
      • Kelly C.
      • Chalmers J.D.
      • Crossingham I.
      • Relph N.
      • Felix L.M.
      • Evans D.J.
      • Milan S.J.
      • Spencer S.
      Macrolide antibiotics for bronchiectasis.
      ,
      • Wang D.
      • Fu W.
      • Dai J.
      Meta-analysis of macrolide maintenance therapy for prevention of disease exacerbations in patients with noncystic fibrosis bronchiectasis.
      ]. There is debate as to whether these benefits are the result of an anti-inflammatory effect, as similar benefits have been seen in reducing exacerbations in other conditions (e.g. COPD) [
      • Janjua S.
      • Mathioudakis A.G.
      • Fortescue R.
      • Walker R.A.
      • Sharif S.
      • Threapleton C.J.
      • Dias S.
      Prophylactic antibiotics for adults with chronic obstructive pulmonary disease: a network meta-analysis.
      ], or an antimicrobial effect. Macrolide monotherapy should not be prescribed for patients known to have NTM present in respiratory cultures to avoid selection of macrolide-resistant pathogens [
      • Aksamit T.R.
      • Philley J.V.
      • Griffith D.E.
      Nontuberculous mycobacterial (NTM) lung disease: the top ten essentials.
      ]; efforts should be made to rule out the presence of NTM prior to beginning macrolides and periodically during their chronic use to minimize macrolide resistance. Baseline electrocardiogram should be considered to assess for prolonged QT interval, which may be a contraindication to treatment. Although other oral antimicrobials (e.g. quinolones, sulphonamides or amoxycillin/clavulanic acid), either chronically or in rotation, have been used in patients with frequent PEx, they appear to be less effective than macrolides and there are limited data to support this approach [
      • Janjua S.
      • Mathioudakis A.G.
      • Fortescue R.
      • Walker R.A.
      • Sharif S.
      • Threapleton C.J.
      • Dias S.
      Prophylactic antibiotics for adults with chronic obstructive pulmonary disease: a network meta-analysis.
      ].
      Inhaled antibiotics have been approved for the treatment of persistent Pseudomonas infection in patients with CF, with the benefit of increased lung function and a reduction in PEx [
      • Mogayzel Jr., P.J.
      • Naureckas E.T.
      • Robinson K.A.
      • Mueller G.
      • Hadjiliadis D.
      • Hoag J.B.
      • Lubsch L.
      • Hazle L.
      • Sabadosa K.
      • Marshall B.
      Pulmonary Clinical Practice Guidelines Committee, Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health.
      ]. Clinical trials of inhaled antibiotics for BE due to causes other than CF have generally not demonstrated similar benefits [
      • Tabernero Huguet E.
      • Gil Alaña P.
      • Alkiza Basañez R.
      • Hernández Gil A.
      • Garros Garay J.
      • Artola Igarza J.L.
      Inhaled colistin in elderly patients with non-cystic fibrosis bronchiectasis and chronic Pseudomonas aeruginosa bronchial infection [in Spanish].
      ,
      • Barker A.F.
      • O'Donnell A.E.
      • Flume P.
      • Thompson P.J.
      • Ruzi J.D.
      • de Gracia J.
      • Boersma W.G.
      • De Soyza A.
      • Shao L.
      • Zhang J.
      • Haas L.
      • Lewis S.A.
      • Leitzinger S.
      • Montgomery A.B.
      • McKevitt M.T.
      • Gossage D.
      • Quittner A.L.
      • O'Riordan T.G.
      Aztreonam for inhalation solution in patients with non-cystic fibrosis bronchiectasis (AIR-BX1 and AIR-BX2): two randomised double-blind, placebo-controlled phase 3 trials.
      ,
      • De Soyza A.
      • Aksamit T.
      • Bandel T.J.
      • Criollo M.
      • Elborn J.S.
      • Operschall E.
      • Polverino E.
      • Roth K.
      • Winthrop K.L.
      • Wilson R.
      RESPIRE 1: a phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis.
      ,
      • Haworth C.S.
      • Bilton D.
      • Chalmers J.D.
      • Davis A.M.
      • Froehlich J.
      • Gonda I.
      • Thompson B.
      • Wanner A.
      • O'Donnell A.E.
      Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis bronchiectasis and chronic lung infection with Pseudomonas aeruginosa (ORBIT-3 and ORBIT-4): two phase 3, randomised controlled trials.
      ,
      • Serisier D.J.
      • Bilton D.
      • De Soyza A.
      • Thompson P.J.
      • Kolbe J.
      • Greville H.W.
      • Cipolla D.
      • Bruinenberg P.
      • Gonda I.
      ORBIT-2 investigators, Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): a randomised, double-blind, placebo-controlled trial.
      ,
      • Aksamit T.
      • De Soyza A.
      • Bandel T.J.
      • Criollo M.
      • Elborn J.S.
      • Operschall E.
      • Polverino E.
      • Roth K.
      • Winthrop K.L.
      • Wilson R.
      RESPIRE 2: a phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis.
      ], and therefore, no products are approved for this indication. However, not all data are negative. In a Phase 2, randomized, placebo-controlled trial, an inhaled formulation of colistin significantly prolonged the time to PEx in patients with BE and P. aeruginosa infection who were adherent to therapy, although the difference versus placebo did not reach statistical significance in the intent-to-treat population [
      • Haworth C.S.
      • Foweraker J.E.
      • Wilkinson P.
      • Kenyon R.F.
      • Bilton D.
      Inhaled colistin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection.
      ]. In addition, an open-label randomized trial with nebulized gentamicin showed a significant reduction in PEx and improvements in exercise capacity and symptoms (including cough) compared with placebo in patients with non-CF BE [
      • Murray M.P.
      • Govan J.R.
      • Doherty C.J.
      • Simpson A.J.
      • Wilkinson T.S.
      • Chalmers J.D.
      • Greening A.P.
      • Haslett C.
      • Hill A.T.
      A randomized controlled trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis.
      ]. Similarly, a recent post-hoc analysis of the AIR-BX studies found improvements in cough and sputum measures with inhaled aztreonam treatment [
      • Crichton M.L.
      • Lonergan M.
      • Barker A.F.
      • Sibila O.
      • Goeminne P.
      • Shoemark A.
      • Chalmers J.D.
      Inhaled aztreonam improves symptoms of cough and sputum production in patients with bronchiectasis: a post hoc analysis of the AIR-BX studies.
      ]. Symptomatic improvements may be mediated by a reduction in the P. aeruginosa density in sputum, which has been noted in several trials with inhaled antibiotics [
      • Murray M.P.
      • Govan J.R.
      • Doherty C.J.
      • Simpson A.J.
      • Wilkinson T.S.
      • Chalmers J.D.
      • Greening A.P.
      • Haslett C.
      • Hill A.T.
      A randomized controlled trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis.
      ,
      • VanDevanter D.R.
      • Gonda I.
      • Dahms J.
      • Cipolla D.
      • Davis A.M.
      • Chalmers J.D.
      • Froehlich J.
      Microbiological changes observed over 48 weeks of treatment with inhaled liposomal ciprofloxacin in individuals with non-cystic fibrosis bronchiectasis and chronic Pseudomonas aeruginosa lung infection.
      ]. Retrospective clinical data have also suggested that inhaled antibiotics are beneficial in some patients, especially those with more frequent PEx, poorer lung function and higher BSI scores [
      • Nadig T.R.
      • Flume P.A.
      Aerosolized antibiotics for patients with bronchiectasis.
      ]. Taken together, these data suggest that despite there being no antibiotics currently approved for treatment, chronic suppressive inhaled antibiotic therapy may represent a novel treatment method in some patients with BE unrelated to CF. Phase 3 studies in patients with BE and chronic P. aeruginosa infection are currently underway (NCT03093974, NCT03460704). Inhaled antibiotics that have been used-off label or are currently under investigation for BE within the United States are shown in Table 2.
      Table 2Agents under investigation for bronchiectasis or currently used-off label in the United States.
      DrugFormulationCurrent approved indicationPhase of study (bronchiectasis)
      Antimicrobials
      ColistinInhaled (I-neb® Adaptive Aerosol Delivery system)N/A3
      TobramycinDry powder inhalerCF2
      TobramycinInhaled solutionCFN/A
      TobramycinInhaled liposomalN/AN/A
      GentamicinNebulizedCFN/A
      Amikacin liposomeInhaledTreatment-refractory MAC lung diseaseTreatment-naive MAC lung disease
      AztreonamInhaledCFN/A
      Mucoactive therapies
      Dornase alfaNebulizedCFN/A
      Hypertonic salineNebulizedHyponatremia; ICPN/A
      MannitolInhaled or intravenous administrationICP; intraocular pressure; promotion of diuresisN/A
      Anti-inflammatories
      BrensocatibOralN/A2, 3
      CF: cystic fibrosis; ICP, increased intracranial pressure; MAC: Mycobacterium avium complex; N/A: not applicable.
      There are many opportunities to understand the optimal use of antimicrobials in BE including proper selection and dosing, treatment duration, empirical treatment, and over-reliance on antimicrobials instead of airway clearance. In addition, there should be increased knowledge regarding the safety of antimicrobials used with great frequency or long durations (e.g. chronic macrolides, aminoglycosides) [
      • Henkle E.
      • Daley D.L.
      • Curtis J.R.
      • Chan B.
      • Aksamit T.R.
      • Winthrop K.L.
      Comparative safety of inhaled corticosteroids and macrolides in Medicare enrolees with bronchiectasis.
      ]. Extrapolation from trials in CF should be avoided since individuals with non-CF BE tend to be older and differ in many other ways. Further research is also needed to compare the efficacy of inhaled versus systemic delivery of antimicrobial therapies [
      • Spencer S.
      • Felix L.M.
      • Milan S.J.
      • Normansell R.
      • Goeminne P.C.
      • Chalmers J.D.
      • Donovan T.
      Oral versus inhaled antibiotics for bronchiectasis.
      ].

      4. The unmet needs in BE

      Although we have described therapies commonly used for the treatment of BE, there is a great need for therapies specific for BE and to define which patients will benefit the most from each therapy. Unanswered questions in relation to the diagnosis, evaluation and treatment of BE, and in clinical trial design are presented in Table 3.
      Table 3Unanswered questions in bronchiectasis diagnosis and management.
      AreaGeneral questionsExamples of specific questions
      Diagnosis
      • Who should undergo HRCT chest?
      • •What is the prevalence of BE on CT chest imaging performed on patients with persistent cough
      • •What diagnostic tests should be performed to establish etiology?
      • •What is the prevalence of airways obstruction on spirometry in patients with BE but without emphysema?
      Evaluation
      • •What are the factors that predict a PEx?
      • •Does the history of PEx in the previous year predict the number of events in subsequent years?
      • •What is the value of surveillance microbiology testing?
      • •What is the incidence and prevalence of bacteria, mycobacteria and fungi in quarterly respiratory cultures in a BE population?
      • •How often should it be performed?
      • •What is the value of surveillance imaging?
      • •What is the progression of disease seen on annual CT chest imaging in a BE population?
      • •Are there biomarkers that can predict clinical outcomes?
      • •Does CRP predict PEx in patients with BE?
      Treatment
      • •Who benefits from airway clearance therapies?
      • •Do symptoms and PEx improve with airway clearance in patients with BE with and without mucus plugging seen on CT chest imaging?
      • •Who would benefit from other approved therapies?
      • •Does dornase alfa or hypertonic saline improve symptoms in BE patients with specific findings on CT chest imaging?
      • •What symptomatic therapies are effective to improve health and prevent PEx?
      • •Do inhaled antibiotics reduce the occurrence of PEx in BE patients who meet the frequent exacerbator phenotype?
      • •Do anti-inflammation medications have a role?
      • •Do inhaled steroids improve clinical outcomes in BE patients who have eosinophilia?
      • •Which patients would benefit?
      • •What safety monitoring is appropriate?
      • •What is the prevalence of hearing loss identified on audiology in BE patients on chronic inhaled aminoglycosides and/or oral macrolides?
      Clinical trials
      • •What are the appropriate clinical endpoints for a trial?
      • •Can we identify a patient-reported PEx using wearable technology?
      • •What measures should a composite outcome include?
      • •How long does it take to have quality of life measures return to baseline after treatment of a PEx?
      • •Can decline in FEV1 be used to define PEx in BE?
      • •When is the right time to measure them?
      • •Does monthly measurement of symptoms identify PEx better than random assessment or relying on patient report only?
      • •Can a validated symptom score be useful to define exacerbation early?
      • •When do quality of life measures reach an asymptote during and after treatment of a PEx?
      • •How best to define inclusion and exclusion criteria for studies?
      • •Can increased airway wall thickness or other findings by CT chest imaging define patients likely to respond to a treatment in a study of BE?
      BE, bronchiectasis; CRP, C-reactive protein; CT, computed tomography; FEV1, forced expiratory volume; HRCT, high resolution computed tomography; PEx, pulmonary exacerbation.

      4.1 Diagnosis and patient evaluation

      As stated earlier, many patients with BE are not diagnosed until well after symptom onset. It is believed that earlier diagnosis will lead to earlier intervention and could alleviate symptoms, as well as potentially prevent the progression of the disease. Identification of sensitive and specific clinical criteria to prompt radiological testing and education of the primary care community might achieve this goal. Evaluation of the patient to establish the etiology and comorbid factors could be improved with standardized testing recommendations. Moreover, improvements in describing clinical phenotypes would help in the development and use of specific therapies.

      4.2 Treatment

      Prescription of appropriate therapy should be based upon a careful assessment of the signs and symptoms exhibited by the patient. Most of the known causes of BE do not have specific therapies, underlining the opportunity for therapeutic development for those conditions. It is commonly accepted that airway clearance therapies are basic to the treatment of patients with BE, but the evidence to support use of medications to enhance clearance of sputum are less robust. Some medications, such as hypertonic saline, are proposed as beneficial, but some patients are not able to tolerate it, and other agents, such as dornase alfa, are not recommended based on a previous trial [
      • O'Donnell A.E.
      • Barker A.F.
      • Ilowite J.S.
      • Fick R.B.
      Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase Study Group.
      ]. Research is needed to identify who might benefit (or not) from these medications and which endpoints are needed to accurately ascertain if a patient has benefited. In addition, there remain gaps in the development of therapies to relieve symptoms in BE patients.

      4.2.1 Optimizing antimicrobial therapy

      Although there is evidence that some patients with BE benefit from the use of intermittent or chronic antibiotic treatment, there are no approved drugs for this indication, indicating a clear gap in the management of patients with BE. Despite the evidence of benefit in some patients, there remains a concern about antibiotic resistance in bacteria present in these patients [
      • Kaehne A.
      • Milan S.J.
      • Felix L.M.
      • Sheridan E.
      • Marsden P.A.
      • Spencer S.
      Head-to-head trials of antibiotics for bronchiectasis.
      ]. It is important to acknowledge that antimicrobial resistance can be driven by the inappropriate use of antibiotics, such as an incorrect selection of antibiotics, inadequate doses, prolonged durations, and treatment when an antibiotic is not indicated [
      • Byrne M.K.
      • Miellet S.
      • McGlinn A.
      • Fish J.
      • Meedya S.
      • Reynolds N.
      • van Oijen A.M.
      The drivers of antibiotic use and misuse: the development and investigation of a theory driven community measure.
      ]. Clinical experience with CF patients suggests that some patients will benefit from suppressive antibiotic therapy, even in the presence of resistant pathogens [
      • Keating C.L.
      • Zuckerman J.B.
      • Singh P.K.
      • McKevitt M.
      • Gurtovaya O.
      • Bresnik M.
      • Marshall B.C.
      • Saiman L.
      Pseudomonas aeruginosa susceptibility patterns and associated clinical outcomes in people with cystic fibrosis following approval of aztreonam lysine for inhalation.
      ]; whether this is true in the non-CF BE population has yet to be demonstrated. As such, there may be a role for suppressive antibiotic therapy in some patients with BE, but such treatment should adhere to the principles of antimicrobial stewardship (i.e. using antibiotics appropriately). Again, this highlights the need for clinical trials to provide robust evidence for which patients will benefit the most from antimicrobial therapy.
      The increasing frequency of antimicrobial resistance has warranted the development of novel antibiotic drug classes. However, in the absence of novel antibiotic drug classes, there remains potential to improve the efficacy, tolerability and pharmacokinetics of existing antimicrobials. For example, research into the structure-toxicity relationship of aminoglycosides can mitigate the ototoxicity and nephrotoxicity of these agents by reducing their uptake by and intracellular effects in eukaryotic cells [
      • Jospe-Kaufman M.
      • Siomin L.
      • Fridman M.
      The relationship between the structure and toxicity of aminoglycoside antibiotics.
      ]. Inhalational antibiotics may lessen the risk of systemic adverse effects, including selection of resistant pathogens; however, there remains some systemic absorption and exposure even through the inhalational route [
      • Maselli D.J.
      • Keyt H.
      • Restrepo M.I.
      Inhaled antibiotic therapy in chronic respiratory diseases.
      ]. In addition, research into pharmaceutical matrices, coatings and mucoadhesive technology could optimize the pharmacokinetic–pharmacodynamic profiles of antibiotics to improve efficacy and limit the development of resistance and adverse events [
      • Gao P.
      • Nie X.
      • Zou M.
      • Shi Y.
      • Cheng G.
      Recent advances in materials for extended-release antibiotic delivery system.
      ].

      4.2.2 Anti-inflammatory agents

      Inflammation is a critical feature of the BE airways. Higher measures of inflammation (e.g. elevated neutrophil counts and increased neutrophil elastase [NE]) have been associated with worse clinical outcomes, such as more frequent PEx [
      • Shoemark A.
      • Smith A.
      • Giam A.
      • Dicker A.
      • Richardson H.
      • Huang J.T.J.
      • Keir H.R.
      • Finch S.
      • Aliberti S.
      • Sibila O.
      • Chalmers J.D.
      Inflammatory molecular endotypes in bronchiectasis.
      ,
      • Chalmers J.D.
      • Moffitt K.L.
      • Suarez-Cuartin G.
      • Sibila O.
      • Finch S.
      • Furrie E.
      • Dicker A.
      • Wrobel K.
      • Elborn J.S.
      • Walker B.
      • Martin S.L.
      • Marshall S.E.
      • Huang J.T.
      • Fardon T.C.
      Neutrophil elastase activity is associated with exacerbations and lung function decline in bronchiectasis.
      ]. Anti-inflammatory agents that target the airways, and strategies to optimize host immune response to infections, remain key unmet needs in the management of BE. The ERS guidelines highlight the importance of long-term management of inflammation, but do not recommend the long-term use of anti-inflammatory agents (i.e. ICS or statins) in adult BE patients because of a lack of data regarding adverse events and no clear evidence of benefit [
      • Polverino E.
      • Goeminne P.C.
      • McDonnell M.J.
      • Aliberti S.
      • Marshall S.E.
      • Loebinger M.R.
      • Murris M.
      • Cantón R.
      • Torres A.
      • Dimakou K.
      • De Soyza A.
      • Hill A.T.
      • Haworth C.S.
      • Vendrell M.
      • Ringshausen F.C.
      • Subotic D.
      • Wilson R.
      • Vilaró J.
      • Stallberg B.
      • Welte T.
      • Rohde G.
      • Blasi F.
      • Elborn S.
      • Almagro M.
      • Timothy A.
      • Ruddy T.
      • Tonia T.
      • Rigau D.
      • Chalmers J.D.
      European Respiratory Society guidelines for the management of adult bronchiectasis.
      ]. Long-term use of ICS has been associated with an increased risk of NTM infection in patients with BE [
      • Andrejak C.
      • Nielsen R.
      • Thomsen V.O.
      • Duhaut P.
      • Sorensen H.T.
      • Thomsen R.W.
      Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis.
      ,
      • Hojo M.
      • Iikura M.
      • Hirano S.
      • Sugiyama H.
      • Kobayashi N.
      • Kudo K.
      Increased risk of nontuberculous mycobacterial infection in asthmatic patients using long-term inhaled corticosteroid therapy.
      ,
      • Dirac M.A.
      • Horan K.L.
      • Doody D.R.
      • Meschke J.S.
      • Park D.R.
      • Jackson L.A.
      • Weiss N.S.
      • Winthrop K.L.
      • Cangelosi G.A.
      Environment or host?: a case-control study of risk factors for Mycobacterium avium complex lung disease.
      ]; despite this observation, US data show that around 60% of individuals with BE may be using ICS for ≥1 year [
      • Henkle E.
      • Aksamit T.R.
      • Barker A.F.
      • Curtis J.R.
      • Daley C.L.
      • Anne Daniels M.L.
      • DiMango A.
      • Eden E.
      • Fennelly K.
      • Griffith D.E.
      • Johnson M.
      • Knowles M.R.
      • Leitman A.
      • Leitman P.
      • Malanga E.
      • Metersky M.L.
      • Noone P.G.
      • O'Donnell A.E.
      • Olivier K.N.
      • Prieto D.
      • Salathe M.
      • Thomashow B.
      • Tino G.
      • Turino G.
      • Wisclenny S.
      • Winthrop K.L.
      Pharmacotherapy for non-cystic fibrosis bronchiectasis. Results from an NTM info & research patient survey and the bronchiectasis and NTM research Registry.
      ]. The BTS guidelines advise against oral corticosteroids, phosphodiesterase type 4 inhibitors, methylxanthines, leukotriene receptor antagonists, oral CXC chemokine receptor 2 antagonists or NE inhibitors for BE treatment because of the lack of controlled clinical trials [
      • Hill A.T.
      • Sullivan A.L.
      • Chalmers J.D.
      • De Soyza A.
      • Elborn S.J.
      • Floto A.R.
      • Grillo L.
      • Gruffydd-Jones K.
      • Harvey A.
      • Haworth C.S.
      • Hiscocks E.
      • Hurst J.R.
      • Johnson C.
      • Kelleher P.W.
      • Bedi P.
      • Payne K.
      • Saleh H.
      • Screaton N.J.
      • Smith M.
      • Tunney M.
      • Whitters D.
      • Wilson R.
      • Loebinger M.R.
      British thoracic society guideline for bronchiectasis in adults.
      ]. Yet, the observation of the presence of eosinophils in the airways of approximately 20% of BE patients may lead to the identification of a subset of patients who might benefit from corticosteroids [
      • Shoemark A.
      • Shteinberg M.
      • De Soyza A.
      • Haworth C.S.
      • Richardson H.
      • Gao Y.
      • Perea L.
      • Dicker A.J.
      • Goeminne P.C.
      • Cant E.
      • Polverino E.
      • Altenburg J.
      • Keir H.R.
      • Loebinger M.R.
      • Blasi F.
      • Welte T.
      • Sibila O.
      • Aliberti S.
      • Chalmers J.D.
      Characterization of eosinophilic bronchiectasis: a european multicohort study.
      ]. Macrolides have been shown to reduce PEx frequency in large trials, and it has been suggested this benefit may be due to an anti-inflammatory effect [
      • Altenburg J.
      • de Graaff C.S.
      • Stienstra Y.
      • Sloos J.H.
      • van Haren E.H.
      • Koppers R.J.
      • van der Werf T.S.
      • Boersma W.G.
      Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial.
      ,
      • Rogers G.B.
      • Bruce K.D.
      • Martin M.L.
      • Burr L.D.
      • Serisier D.J.
      The effect of long-term macrolide treatment on respiratory microbiota composition in non-cystic fibrosis bronchiectasis: an analysis from the randomised, double-blind, placebo-controlled BLESS trial.
      ,
      • Serisier D.J.
      • Martin M.L.
      • McGuckin M.A.
      • Lourie R.
      • Chen A.C.
      • Brain B.
      • Biga S.
      • Schlebusch S.
      • Dash P.
      • Bowler S.D.
      Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: the BLESS randomized controlled trial.
      ]. A comparison of chronic suppressive macrolide with ICS use for BE showed that ICS were associated with a greater risk of secondary infection/exacerbation compared with macrolides [
      • Henkle E.
      • Daley D.L.
      • Curtis J.R.
      • Chan B.
      • Aksamit T.R.
      • Winthrop K.L.
      Comparative safety of inhaled corticosteroids and macrolides in Medicare enrolees with bronchiectasis.
      ], yet macrolides are infrequently used as a chronic therapy. Perhaps this is because of fear of NTM infection, and so trials to assess the risk of acquiring NTM, and especially macrolide-resistant NTM, are of interest [
      • Metersky M.L.
      • Choate R.
      The association of long-term macrolide therapy and nontuberculous mycobacterial culture positivity in patients with bronchiectasis.
      ].
      Since neutrophils are the predominant inflammatory cells present in the BE airways, it is appropriate to target them or their products, including neutrophil serine proteases (NSP). Approaches to treatment have included direct inhibitors of NE or depletion of NE by reversible inhibitors of dipeptidyl peptidase 1 (DPP1) that block activation of NSPs. Data from a recent Phase 2 study using a DPP1 inhibitor showed improvements in clinical outcomes [
      • Chalmers J.D.
      • Haworth C.S.
      • Metersky M.L.
      • Loebinger M.R.
      • Blasi F.
      • Sibila O.
      • O'Donnell A.E.
      • Sullivan E.J.
      • Mange K.C.
      • Fernandez C.
      • Zou J.
      • Daley C.L.
      WILLOW Investigators
      Phase 2 trial of the DPP-1 inhibitor brensocatib in bronchiectasis.
      ], and such agents are currently being investigated in human trials (NCT00769119; NCT04594369; NCT04656275).

      4.3 Improvements in trial design

      There are lessons to be learned from failed clinical trials. In some cases, trials may have failed because the investigational drug lacked sufficient efficacy, but it would be unfortunate to give up on treatments that failed because of problems with study design [
      • Metersky M.
      • Chalmers J.
      Bronchiectasis insanity: Doing the same thing over and over again and expecting different results?.
      ]. For example, the earlier trials with inhaled colistin and aztreonam may have failed because of poor subject selection [
      • Barker A.F.
      • O'Donnell A.E.
      • Flume P.
      • Thompson P.J.
      • Ruzi J.D.
      • de Gracia J.
      • Boersma W.G.
      • De Soyza A.
      • Shao L.
      • Zhang J.
      • Haas L.
      • Lewis S.A.
      • Leitzinger S.
      • Montgomery A.B.
      • McKevitt M.T.
      • Gossage D.
      • Quittner A.L.
      • O'Riordan T.G.
      Aztreonam for inhalation solution in patients with non-cystic fibrosis bronchiectasis (AIR-BX1 and AIR-BX2): two randomised double-blind, placebo-controlled phase 3 trials.
      ,
      • Haworth C.S.
      • Foweraker J.E.
      • Wilkinson P.
      • Kenyon R.F.
      • Bilton D.
      Inhaled colistin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection.
      ]. To demonstrate a reduction in PEx, studies should enroll subjects with a sufficiently high baseline PEx rate. Moreover, a significant reduction in PEx was seen among patients who were adherent to colistin, indicating that identifying patients more likely to be adherent could be critical to success of a trial [
      • Haworth C.S.
      • Foweraker J.E.
      • Wilkinson P.
      • Kenyon R.F.
      • Bilton D.
      Inhaled colistin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection.
      ]. Improving the inclusion and exclusion criteria of a trial to better define those patients most likely to respond to the therapy under study is critical to appropriately testing the efficacy of a therapy. However, being overly specific with these criteria may reduce the number of patients who are eligible for the trial.
      Clinical endpoint selection is also critical. The Food & Drug Administration (FDA) has provided guidance for the inclusion of patient-related outcomes in clinical trials of BE (grants.nih.gov/grants/guide/rfa-files/rfa-fd-19-014.html” title="https://grants.nih.gov/grants/guide/rfa-files/rfa-fd-19-014.html">https://grants.nih.gov/grants/guide/rfa-files/rfa-fd-19-014.html). Clinical trials in BE have included a single primary outcome measure, which may not measure the full treatment response. Because of the heterogeneity of BE symptoms, composite clinical endpoints may provide higher accuracy in measuring clinical benefit in randomized controlled trials. This was demonstrated in a recent pooled analysis of three randomized controlled trials, which found a significant clinical improvement when three endpoints from the original trials were combined: 1) absence of PEx during follow-up; 2) improvement in HRQoL above the minimum clinically important difference; and 3) improvement of FEV1 of ≥100 mL [
      • Sibila O.
      • Laserna E.
      • Shoemark A.
      • Bilton D.
      • Crichton M.L.
      • De Soyza A.
      • Boersma W.G.
      • Altenburg J.
      • Chalmers J.D.
      Heterogeneity of treatment response in bronchiectasis clinical trials.
      ].

      5. Conclusion

      While the awareness of BE has increased somewhat in recent years, there is still much work to do to establish evidence to inform standards of care for the management of this condition. We have summarized the findings from a panel of experts; although a systematic review of the literature was not conducted for this meeting, there are previously published reviews and guidelines that were used in the discussion. There are limitations to the approach used here primarily because it includes the opinions of these experts, but they may not be fully reflective of others with similar experience. We did not use a systematic method of measuring the degree of consensus. However, this was intended to stimulate further investigation in the field of bronchiectasis. Addressing the issues raised in this review can provide a framework for future initiatives to improve the management of BE, starting with correct identification and classification of the disease. This will inform all aspects of management, from diagnostic work-up to optimizing airway clearance, addressing underlying inflammation, the correct identification of pathogens and optimal use of antimicrobial therapy. A combination of new, well-designed clinical trials in BE – including new agents, mucolytics and anti-inflammatory drugs – and a new assessment framework that includes appropriate endpoints, phenotype and endotype assessment may prove effective at defining evidence to establish a standard of care for BE. We note that we are considering all endotypes of bronchiectasis, including those with CF. The ultimate goal is a multimodal treatment approach. In patients with CF, provision of multidisciplinary care is now standard, demonstrating what can be achieved using multidimensional assessment and targeted therapy [
      • McDonald V.M.
      • Fingleton J.
      • Agusti A.
      • Hiles S.A.
      • Clark V.L.
      • Holland A.E.
      • Marks G.B.
      • Bardin P.P.
      • Beasley R.
      • Pavord I.D.
      • Wark P.A.B.
      • Gibson P.G.
      Treatable traits down under international workshop participants, treatable traits: a new paradigm for 21st century management of chronic airway diseases: treatable traits down under international workshop report.
      ]; perhaps this could provide a framework for future management of patients with BE.

      Funding

      Support for convening the advisory board and funding of medical writing assistance was provided by Zambon S.p.A.

      Role of the funding source

      Zambon S.p.A funded the convening of the advisory board and medical writing assistance.

      Authorship

      All listed authors made substantial contributions to the conception and design of the review, or the acquisition of data, or the analysis and interpretation of the data; drafting the article or revising it critically for important intellectual content; and provided final approval of the version submitted.

      Author contributions

      Patrick A. Flume: Data curation, Writing-original draft, Writing-reviewing and editing; Ashwin Basavaraj, Bryan Garcia, Kevin Winthrop, Emily Di Mango, Charles L. Daley, Julie V. Philley, Emily Henkle, Anne E. O'Donnell, Mark Metersky: Data curation, Writing-reviewing and editing. All authors approved the final version of the manuscript for submission.

      Data availability statement

      Data sharing is not applicable, as no new data were generated during the course of this study.

      Declaration of competing interest

      Patrick A. Flume has received grant support from Abbvie, Armata, AstraZeneca, Corbus Pharmaceuticals, Cystic Fibrosis Foundation Therapeutics, Insmed, Janssen, Merck, National Institutes of Health, Novartis, Novoteris, Novovax, Proteostasis Therapeutics, Savara, Sound Pharmaceuticals, Inc. and Vertex Pharmaceuticals, Inc., and consultancy fees from Arrevus, Chiesi, Corbus Pharmaceuticals, Eloxx Pharmaceuticals, Hill-Rom, Insmed, Ionis Pharmaceuticals, Janssen Research and Development, McKesson, Merck, Novartis, Polyphor, Proteostasis Therapeutics, Santhera, Savara and Vertex Pharmaceuticals, Inc. Ashwin Basavaraj has acted as a consultant and advisory board participant for Insmed, Hill-Rom, Dymedso, Physioassist and Zambon, is a principal investigator in a clinical trial with Hill-Rom, and has received grant support from Insmed. Bryan Garcia has received grant support from the Cystic Fibrosis Foundation, CHEST Foundation, and consulting honoraria from Zambon, Insmed, Synspira and Resbiotic. Kevin Winthrop has received grant support from Pfizer, BMS, Insmed and the Cystic Fibrosis Foundation, and consulting honoraria from Novartis, Zambon, Insmed, Janssen, Redhills Biopharma, Paratek and Bayer. Emily Di Mango reports receiving advisory board fees from Zambon in 2019 and from Contrafect Pharmaceuticals in 2021. Charles L. Daley has received grant support from the Cystic Fibrosis Foundation, Insmed, Spero, Paratek and BugWorks, and consulted with AstraZeneca, Genentech, Pfizer, Insmed, Spero, Paratek, Beyond Air, AN2, Matinas and Zambon. Julie V. Philley has received grant support from Insmed, AN2, Paratek, Redhill, Electromed, Zambon and Hill Rom, and has been a consultant for Insmed, Paratek, AN2 and Electromed. Emily Henkle has been an advisory board participant for Zambon. Anne E. O'Donnell has received grant support from Insmed, Paratek, Redhill, Zambon, Janssen, and Astra Zeneca and has received consulting honoraria from Insmed, Paratek, Zambon, Boehringer Ingelheim, Astra Zeneca and Electromed. Mark Metersky has been a consultant for Savara, Insmed, International Biophysics, Zambon and Boehringer Ingelheim, and received clinical trial funding from Insmed.

      Acknowledgments

      Medical writing assistance was provided by Marion Barnett, on behalf of Springer Healthcare Communications. This assistance was funded by Zambon S.p.A.

      References

        • Diel R.
        • Ewig S.
        • Blaas S.
        • Jacob C.
        • Juelich F.
        • Korfmann G.
        • Sohrab S.
        • Sutharsan S.
        • Rademacher J.
        Incidence of patients with non-cystic fibrosis bronchiectasis in Germany - a healthcare insurance claims data analysis.
        Respir. Med. 2019 May; 151: 121-127https://doi.org/10.1016/j.rmed.2019.04.007
        • Quint J.K.
        • Millett E.R.
        • Joshi M.
        • Navaratnam V.
        • Thomas S.L.
        • Hurst J.R.
        • Smeeth L.
        • Brown J.S.
        Changes in the incidence, prevalence and mortality of bronchiectasis in the UK from 2004 to 2013: a population-based cohort study.
        Eur. Respir. J. 2016 Jan; 47: 186-193https://doi.org/10.1183/13993003.01033-2015
        • Seitz A.E.
        • Olivier K.N.
        • Adjemian J.
        • Holland S.M.
        • Prevots D.R.
        Trends in bronchiectasis among Medicare beneficiaries in the United States, 2000 to 2007.
        Chest. 2012; 142 (Aug): 432-439https://doi.org/10.1378/chest.11-2209
        • Henkle E.
        • Chan B.
        • Curtis J.R.
        • Aksamit T.R.
        • Daley C.L.
        • Winthrop K.L.
        Characteristics and health-care utilization history of patients with bronchiectasis in US Medicare enrollees with prescription drug plans, 2006 to 2014.
        Chest. 2018 Dec; 154: 1311-1320https://doi.org/10.1016/j.chest.2018.07.014
        • Weycker D.
        • Hansen G.L.
        • Seifer F.D.
        Prevalence and incidence of noncystic fibrosis bronchiectasis among US adults in 2013.
        Chron. Respir. Dis. 2017 Nov; 14: 377-384https://doi.org/10.1177/1479972317709649
        • Flume P.A.
        • Chalmers J.D.
        • Olivier K.N.
        Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity.
        Lancet. 2018 Sep; 392: 880-890https://doi.org/10.1016/S0140-6736(18)31767-7
        • Quint J.K.
        • Millett E.R.
        • Joshi M.
        • Navaratnam V.
        • Thomas S.L.
        • Hurst J.R.
        • Smeeth L.
        • Brown J.S.
        Changes in the incidence, prevalence and mortality of bronchiectasis in the UK from 2004 to 2013: a population-based cohort study.
        Eur. Respir. J. 2016 Jan; 47: 186-193https://doi.org/10.1183/13993003.01033-2015
        • Lopes-Pacheco M.
        CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine.
        Front. Pharmacol. 2020 Feb; 10: 1662https://doi.org/10.3389/fphar.2019.01662
        • Flume P.A.
        • Mogayzel Jr., P.J.
        • Robinson K.A.
        • Rosenblatt R.L.
        • Quittell L.
        • Marshall B.C.
        Clinical practice guidelines for pulmonary therapies committee, cystic fibrosis foundation pulmonary therapies committee, cystic fibrosis pulmonary guidelines: pulmonary complications: hemoptysis and pneumothorax.
        Am. J. Respir. Crit. Care Med. 2010 Aug 1; 182: 298-306https://doi.org/10.1164/rccm.201002-0157CI
        • Flume P.A.
        • Mogayzel Jr., P.J.
        • Robinson K.A.
        • Goss C.H.
        • Rosenblatt R.L.
        • Kuhn R.J.
        • Marshall B.C.
        Clinical practice guidelines for pulmonary therapies committee, cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations.
        Am. J. Respir. Crit. Care Med. 2009 Nov 1; 180: 802-808https://doi.org/10.1164/rccm.200812-1845PP
        • Flume P.A.
        • Robinson K.A.
        • O'Sullivan B.P.
        • Finder J.D.
        • Vender R.L.
        • Willey-Courand D.B.
        • White T.B.
        • Marshall B.C.
        Clinical practice guidelines for pulmonary therapies committee, cystic fibrosis pulmonary guidelines: airway clearance therapies.
        Respir. Care. 2009 Apr; 54: 522-537
        • Mogayzel Jr., P.J.
        • Naureckas E.T.
        • Robinson K.A.
        • Mueller G.
        • Hadjiliadis D.
        • Hoag J.B.
        • Lubsch L.
        • Hazle L.
        • Sabadosa K.
        • Marshall B.
        Pulmonary Clinical Practice Guidelines Committee, Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health.
        Am. J. Respir. Crit. Care Med. 2013 Apr; 187: 680-689https://doi.org/10.1164/rccm.201207-1160oe
        • Flume P.A.
        • O'Sullivan B.P.
        • Robinson K.A.
        • Goss C.H.
        • Mogayzel Jr., P.J.
        • Willey-Courand D.B.
        • Bujan J.
        • Finder J.
        • Lester M.
        • Quittell L.
        • Rosenblatt R.
        • Vender R.L.
        • Hazle L.
        • Sabadosa K.
        • Marshall B.
        • P.T.C
        Cystic Fibrosis Foundation, Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health.
        Am. J. Respir. Crit. Care Med. 2007 Nov; 176: 957-969https://doi.org/10.1164/rccm.200705-664OC
        • Floto R.A.
        • Olivier K.N.
        • Saiman L.
        • Daley C.L.
        • Herrmann J.L.
        • Nick J.A.
        • Noone P.G.
        • Bilton D.
        • Corris P.
        • Gibson R.L.
        • Hempstead S.E.
        • Koetz K.
        • Sabadosa K.A.
        • Sermet-Gaudelus I.
        • Smyth A.R.
        • van Ingen J.
        • Wallace R.J.
        • Winthrop K.L.
        • Marshall B.C.
        • Haworth C.S.
        US cystic fibrosis foundation, European cystic fibrosis society, US cystic fibrosis foundation and European cystic fibrosis society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis.
        Thorax. 2016 Jan; 71: i1-i22https://doi.org/10.1136/thoraxjnl-2015-207360
        • Hill A.T.
        • Sullivan A.L.
        • Chalmers J.D.
        • De Soyza A.
        • Elborn S.J.
        • Floto A.R.
        • Grillo L.
        • Gruffydd-Jones K.
        • Harvey A.
        • Haworth C.S.
        • Hiscocks E.
        • Hurst J.R.
        • Johnson C.
        • Kelleher P.W.
        • Bedi P.
        • Payne K.
        • Saleh H.
        • Screaton N.J.
        • Smith M.
        • Tunney M.
        • Whitters D.
        • Wilson R.
        • Loebinger M.R.
        British thoracic society guideline for bronchiectasis in adults.
        Thorax. 2019 Jan; 74: 1-69https://doi.org/10.1136/thoraxjnl-2018-212463
        • Thoracic Society of Australia and New Zealand
        Chronic Suppurative Lung Disease and Bronchiectasis in Children and Adults in Australia and New Zealand.
        Clinical practice guideline, 2014
        • Polverino E.
        • Goeminne P.C.
        • McDonnell M.J.
        • Aliberti S.
        • Marshall S.E.
        • Loebinger M.R.
        • Murris M.
        • Cantón R.
        • Torres A.
        • Dimakou K.
        • De Soyza A.
        • Hill A.T.
        • Haworth C.S.
        • Vendrell M.
        • Ringshausen F.C.
        • Subotic D.
        • Wilson R.
        • Vilaró J.
        • Stallberg B.
        • Welte T.
        • Rohde G.
        • Blasi F.
        • Elborn S.
        • Almagro M.
        • Timothy A.
        • Ruddy T.
        • Tonia T.
        • Rigau D.
        • Chalmers J.D.
        European Respiratory Society guidelines for the management of adult bronchiectasis.
        Eur. Respir. J. 2017 Sep; 501700629https://doi.org/10.1183/13993003.00629-2017
        • Girón Moreno R.M.
        • Martínez-Vergara A.
        • Martínez-García M.Á.
        Personalized approaches to bronchiectasis.
        Expet Rev. Respir. Med. 2021 Apr; 15: 477-491https://doi.org/10.1080/17476348.2021.1882853
        • Boaventura R.
        • Sibila O.
        • Agusti A.
        • Chalmers J.D.
        Treatable traits in bronchiectasis.
        Eur. Respir. J. 2018 Sep; 521801269https://doi.org/10.1183/13993003.01269-2018
        • Lonni S.
        • Chalmers J.D.
        • Goeminne P.C.
        • McDonnell M.J.
        • Dimakou K.
        • De Soyza A.
        • Polverino E.
        • Van de Kerkhove C.
        • Rutherford R.
        • Davison J.
        • Rosales E.
        • Pesci A.
        • Restrepo M.I.
        • Torres A.
        • Aliberti S.
        Etiology of non–cystic fibrosis bronchiectasis in adults and its correlation to disease severity.
        Ann Am Thorac Soc. 2015 Dec; 12: 1764-1770https://doi.org/10.1513/AnnalsATS.201507-472OC
        • Cole P.J.
        Inflammation: a two-edged sword--the model of bronchiectasis.
        Eur. J. Respir. Dis. Suppl. 1986; 147: 6-15
        • Gao Y.H.
        • Guan W.J.
        • Liu S.X.
        • Wang L.
        • Cui J.J.
        • Chen R.C.
        • Zhang G.J.
        Aetiology of bronchiectasis in adults: a systematic literature review.
        Respirology. 2016 Nov; 21: 1376-1383https://doi.org/10.1111/resp.12832
        • Shoemark A.
        • Smith A.
        • Giam A.
        • Dicker A.
        • Richardson H.
        • Huang J.T.J.
        • Keir H.R.
        • Finch S.
        • Aliberti S.
        • Sibila O.
        • Chalmers J.D.
        Inflammatory molecular endotypes in bronchiectasis.
        Eur. Respir. J. 2019; 54: PA2170https://doi.org/10.1183/13993003.congress-2019.PA2170
        • Aksamit T.R.
        • O'Donnell A.E.
        • Barker A.
        • Olivier K.N.
        • Winthrop K.L.
        • Daniels M.L.A.
        • Johnson M.
        • Eden E.
        • Griffith D.
        • Knowles M.
        • Metersky M.
        • Salathe M.
        • Thomashow B.
        • Tino G.
        • Turino G.
        • Carretta B.
        • Daley C.L.
        • Bronchiectasis Research Registry Consortium
        Adult patients with bronchiectasis: a first look at the US Bronchiectasis Research Registry.
        Chest. 2017 May; 151: 982-992https://doi.org/10.1016/j.chest.2016.10.055
        • Pembridge T.
        • Chalmers J.D.
        Precision medicine in bronchiectasis.
        Breathe. 2021 Dec; 17210119https://doi.org/10.1183/20734735.0119-2021
        • Tambascio J.
        • Lisboa R.M.
        • Passarelli Rde C.
        • Martinez J.A.
        • Gastaldi A.C.
        Adhesiveness and purulence of respiratory secretions: implications for mucociliary transport in patients with bronchiectasis.
        J. Bras. Pneumol. 2010; 36 (Sep-Oct): 545-553https://doi.org/10.1590/s1806-37132010000500005
        • Chalmers J.D.
        • Aliberti S.
        • Filonenko A.
        • Shteinberg M.
        • Goeminne P.C.
        • Hill A.T.
        • Fardon T.C.
        • Obradovic D.
        • Gerlinger C.
        • Sotgiu G.
        • Operschall E.
        • Rutherford R.M.
        • Dimakou K.
        • Polverino E.
        • De Soyza A.
        • McDonnell M.J.
        Characterization of the “frequent exacerbator phenotype” in bronchiectasis.
        Am. J. Respir. Crit. Care Med. 2018 Jun; 197: 1410-1420https://doi.org/10.1164/rccm.201711-2202OC
        • Chalmers J.D.
        Bronchiectasis: phenotyping a complex disease.
        COPD. 2017 Mar; 14: S12-S18https://doi.org/10.1080/15412555.2017.1286171
        • Aliberti S.
        • Lonni S.
        • Dore S.
        • McDonnell M.J.
        • Goeminne P.C.
        • Dimakou K.
        • Fardon T.C.
        • Rutherford R.
        • Pesci A.
        • Restrepo M.I.
        • Sotgiu G.
        • Chalmers J.D.
        Clinical phenotypes in adult patients with bronchiectasis.
        Eur. Respir. J. 2016 Apr; 47: 1113-1122https://doi.org/10.1183/13993003.01899-2015
        • Finch S.
        • McDonnell M.J.
        • Abo-Leyah H.
        • Aliberti S.
        • Chalmers J.D.
        A comprehensive analysis of the impact of Pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis.
        Ann Am Thorac Soc. 2015 Nov; 12: 1602-1611https://doi.org/10.1513/AnnalsATS.201506-333OC
        • Mirsaeidi M.
        • Hadid W.
        • Ericsoussi B.
        • Rodgers D.
        • Sadikot R.T.
        Non-tuberculous mycobacterial disease is common in patients with non-cystic fibrosis bronchiectasis.
        Int. J. Infect. Dis. 2013 Nov; 17: e1000-e1004https://doi.org/10.1016/j.ijid.2013.03.018
        • Dournes G.
        • Hall C.S.
        • Willmering M.M.
        • Brody A.S.
        • Macey J.
        • Bui S.
        • Denis de Senneville B.
        • Berger P.
        • Laurent F.
        • Benlala I.
        • Woods J.C.
        Artificial intelligence in computed tomography for quantifying lung changes in the era of CFTR modulators.
        Eur. Respir. J. 2022 Mar; 592100844https://doi.org/10.1183/13993003.00844-2021
        • Kuo W.
        • de Bruijne M.
        • Petersen J.
        • Nasserinejad K.
        • Ozturk H.
        • Chen Y.
        • Perez-Rovira A.
        • Tiddens H.
        Diagnosis of bronchiectasis and airway wall thickening in children with cystic fibrosis: objective airway-artery quantification.
        Eur. Radiol. 2017 Nov; 27: 4680-4689https://doi.org/10.1007/s00330-017-4819-7
        • Kuo W.
        • Perez-Rovira A.
        • Tiddens H.
        • de Bruijne M.
        Normal Chest CT study group, Airway tapering: an objective image biomarker for bronchiectasis.
        Eur. Radiol. 2020 May; 30: 2703-2711https://doi.org/10.1007/s00330-019-06606-w
        • Agusti A.
        • Bel E.
        • Thomas M.
        • Vogelmeier C.
        • Brusselle G.
        • Holgate S.
        • Humbert M.
        • Jones P.
        • Gibson P.G.
        • Vestbo J.
        • Beasley R.
        • Pavord I.D.
        Treatable traits: toward precision medicine of chronic airway diseases.
        Eur. Respir. J. 2016 Feb; 47: 410-419https://doi.org/10.1183/13993003.01359-2015
        • Ameratunga R.
        • Jordan A.
        • Cavadino A.
        • Ameratunga S.
        • Hills T.
        • Steele R.
        • Hurst M.
        • McGettigan B.
        • Chua I.
        • Brewerton M.
        • Kennedy N.
        • Koopmans W.
        • Ahn Y.
        • Barker R.
        • Allan C.
        • Storey P.
        • Slade C.
        • Baker A.
        • Huang L.
        • Woon S.T.
        Bronchiectasis is associated with delayed diagnosis and adverse outcomes in the New Zealand Common Variable Immunodeficiency Disorders cohort study.
        Clin. Exp. Immunol. 2021 Jun; 204: 352-360https://doi.org/10.1111/cei.13595
        • Girón R.M.
        • de Gracia Roldán J.
        • Olveira C.
        • Vendrell M.
        • Martínez-García M.Á.
        • de la Rosa D.
        • Máiz L.
        • Ancochea J.
        • Vázquez L.
        • Borderías L.
        • Polverino E.
        • Martínez-Moragón E.
        • Rajas O.
        • Soriano J.B.
        Sex bias in diagnostic delay in bronchiectasis: an analysis of the Spanish Historical Registry of Bronchiectasis.
        Chron. Respir. Dis. 2017 Nov; 14: 360-369https://doi.org/10.1177/1479972317702139
        • Shoemark A.
        • Ozerovitch L.
        • Wilson R.
        Aetiology in adult patients with bronchiectasis.
        Respir. Med. 2007 Jun; 101: 1163-1170https://doi.org/10.1016/j.rmed.2006.11.008
        • Smith M.P.
        Diagnosis and management of bronchiectasis.
        CMAJ (Can. Med. Assoc. J.). 2017 Jun; 189: E828-E835https://doi.org/10.1503/cmaj.160830
        • Shapiro A.J.
        • Davis S.D.
        • Polineni D.
        • Manion M.
        • Rosenfeld M.
        • Dell S.D.
        • Chilvers M.A.
        • Ferkol T.W.
        • Zariwala M.A.
        • D Sagel S.
        • Josephson M.
        • Morgan L.
        • Yilmaz O.
        • Olivier K.N.
        • Milla C.
        • Pittman J.E.
        • A Daniels M.L.
        • Jones M.H.
        • Janahi I.A.
        • Ware S.M.
        • Daniel S.J.
        • Cooper M.L.
        • Nogee L.M.
        • Anton B.
        • Eastvold T.
        • Ehrne L.
        • Guadagno E.
        • Knowles M.R.
        • Leigh M.W.
        • Lavergne V.
        American thoracic society assembly on pediatrics, diagnosis of primary ciliary dyskinesia, an official American thoracic society clinical practice guideline.
        Am. J. Respir. Crit. Care Med. 2018 Jun; 197: e24-e39https://doi.org/10.1164/rccm.201805-0819ST
        • Chalmers J.D.
        • Restrepo M.I.
        Bronchiectasis management: the state of the union.
        Chest. 2017 Dec; 152: 1097-1099https://doi.org/10.1016/j.chest.2017.07.037
        • Lee A.L.
        • Burge A.T.
        • Holland A.E.
        Airway clearance techniques for bronchiectasis.
        Cochrane Database Syst. Rev. 2015; 11 (Nov): CD008351https://doi.org/10.1002/14651858.CD008351.pub3
        • O'Donnell A.E.
        • Barker A.F.
        • Ilowite J.S.
        • Fick R.B.
        Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase Study Group.
        Chest. 1998 May; 113: 1329-1334https://doi.org/10.1378/chest.113.5.1329
        • McDonnell M.J.
        • O'Toole D.
        • Ward C.
        • Pearson J.P.
        • Lordan J.L.
        • De Soyza A.
        • Loebinger M.
        • Chalmers J.D.
        • Laffey J.G.
        • Rutherford R.M.
        A qualitative synthesis of gastro-oesophageal reflux in bronchiectasis: current understanding and future risk.
        Respir. Med. 2018 Aug; 141: 132-143https://doi.org/10.1016/j.rmed.2018.06.031
        • National Institute for Health and Care Excellence
        Clinical Guideline [CG184]. Gastro-Oesophageal Reflux Disease and Dyspepsia in Adults: Investigation and Management.
        2014
        https://www.nice.org.uk/guidance/cg184
        Date accessed: February 9, 2022
        • Chalmers J.D.
        • Sethi S.
        Raising awareness of bronchiectasis in primary care: overview of diagnosis and management strategies in adults.
        NPJ Prim Care Respir Med. 2017 Mar; 27: 18https://doi.org/10.1038/s41533-017-0019-9
        • Chen P.
        • Zhou G.
        • Lin J.
        • Li L.
        • Zeng Z.
        • Chen M.
        • Zhang S.
        Serum biomarkers for inflammatory bowel disease.
        Front. Med. 2020 Apr; 7: 123https://doi.org/10.3389/fmed.2020.00123
        • Håkansson K.E.J.
        • Fjaellegaard K.
        • Browatzki A.
        • Dönmez Sin M.
        • Ulrik C.S.
        Inhaled corticosteroid therapy in bronchiectasis is associated with all-cause mortality: a prospective cohort study.
        Int. J. Chronic Obstr. Pulm. Dis. 2021 Jul; 16: 2119-2127https://doi.org/10.2147/COPD.S311236
        • McDonnell M.J.
        • Aliberti S.
        • Goeminne P.C.
        • Restrepo M.I.
        • Finch S.
        • Pesci A.
        • Dupont L.J.
        • Fardon T.C.
        • Wilson R.
        • Loebinger M.R.
        • Skrbic D.
        • Obradovic D.
        • De Soyza A.
        • Ward C.
        • Laffey J.G.
        • Rutherford R.M.
        • Chalmers J.D.
        Comorbidities and the risk of mortality in patients with bronchiectasis: an international multicentre cohort study.
        Lancet Respir. Med. 2016 Dec; 4: 969-979https://doi.org/10.1016/S2213-2600(16)30320-4
        • Patel S.
        • Cole A.D.
        • Nolan C.M.
        • Barker R.E.
        • Jones S.E.
        • Kon S.
        • Cairn J.
        • Loebinger M.
        • Wilson R.
        • Man W.D.
        Pulmonary rehabilitation in bronchiectasis: a propensity-matched study.
        Eur. Respir. J. 2019 Jan; 53https://doi.org/10.1183/13993003.01264-2018
        • Hill A.T.
        • Haworth C.S.
        • Aliberti S.
        • Barker A.
        • Blasi F.
        • Boersma W.
        • Chalmers J.D.
        • De Soyza A.
        • Dimakou K.
        • Elborn J.S.
        • Feldman C.
        • Flume P.
        • Goeminne P.C.
        • Loebinger M.R.
        • Menendez R.
        • Morgan L.
        • Murris M.
        • Polverino E.
        • Quittner A.
        • Ringshausen F.C.
        • Tino G.
        • Torres A.
        • Vendrell M.
        • Welte T.
        • Wilson R.
        • Wong C.
        • O'Donnell A.
        • Aksamit T.
        EMBARC/BRR definitions working group, Pulmonary exacerbation in adults with bronchiectasis: a consensus definition for clinical research.
        Eur. Respir. J. 2017 Jun; 491700051https://doi.org/10.1183/13993003.00051-2017
        • Goeminne P.C.
        • Hernandez F.
        • Diel R.
        • Filonenko A.
        • Hughes R.
        • Juelich F.
        • Solomon G.M.
        • Upton A.
        • Wichmann K.
        • Xu W.
        • Chalmers J.D.
        The economic burden of bronchiectasis - known and unknown: a systematic review.
        BMC Pulm. Med. 2019 Feb; 19: 54https://doi.org/10.1186/s12890-019-0818-6
        • Flume P.A.
        • Suthoff E.D.
        • Kosinski M.
        • Marigowda G.
        • Quittner A.L.
        Measuring recovery in health-related quality of life during and after pulmonary exacerbations in patients with cystic fibrosis.
        J. Cyst. Fibros. 2019 Sep; 18: 737-742https://doi.org/10.1016/j.jcf.2018.12.004
        • Brill S.E.
        • Patel A.R.
        • Singh R.
        • Mackay A.J.
        • Brown J.S.
        • Hurst J.R.
        Lung function, symptoms and inflammation during exacerbations of non-cystic fibrosis bronchiectasis: a prospective observational cohort study.
        Respir. Res. 2015 Feb; 16: 16https://doi.org/10.1186/s12931-015-0167-9
        • Chalmers J.D.
        • Goeminne P.
        • Aliberti S.
        • McDonnell M.J.
        • Lonni S.
        • Davidson J.
        • Poppelwell L.
        • Salih W.
        • Pesci A.
        • Dupont L.J.
        • Fardon T.C.
        • De Soyza A.
        • Hill A.T.
        The bronchiectasis severity index. An international derivation and validation study.
        Am. J. Respir. Crit. Care Med. 2014 Mar; 189: 576-585https://doi.org/10.1164/rccm.201309-1575OC
        • Green H.
        • Jones A.M.
        The microbiome and emerging pathogens in cystic fibrosis and non-cystic fibrosis bronchiectasis.
        Semin. Respir. Crit. Care Med. 2015 Apr; 36: 225-235https://doi.org/10.1055/s-0035-1546752
        • Somayaji R.
        • Parkins M.D.
        • Shah A.
        • Martiniano S.L.
        • Tunney M.M.
        • Kahle J.S.
        • Waters V.J.
        • Elborn J.S.
        • Bell S.C.
        • Flume P.A.
        • VanDevanter D.R.
        Antimicrobial Resistance in Cystic Fibrosis International Working Group, Antimicrobial susceptibility testing (AST) and associated clinical outcomes in individuals with cystic fibrosis: a systematic review.
        J. Cyst. Fibros. 2019 Mar; 18: 236-243https://doi.org/10.1016/j.jcf.2019.01.008
        • Goyal V.
        • Grimwood K.
        • Ware R.S.
        • Byrnes C.A.
        • Morris P.S.
        • Masters I.B.
        • McCallum G.B.
        • Binks M.J.
        • Smith-Vaughan H.
        • O'Grady K.F.
        • Champion A.
        • Buntain H.M.
        • Schultz A.
        • Chatfield M.
        • Torzillo P.J.
        • Chang A.B.
        Efficacy of oral amoxicillin-clavulanate or azithromycin for non-severe respiratory exacerbations in children with bronchiectasis (BEST-1): a multicentre, three-arm, double-blind, randomised placebo-controlled trial.
        Lancet Respir. Med. 2019 Sep; 7: 791-801https://doi.org/10.1016/s2213-2600(19)30254-1
        • Bedi P.
        • Cartlidge M.K.
        • Zhang Y.
        • Turnbull K.
        • Donaldson S.
        • Clarke A.
        • Crowe J.
        • Campbell K.
        • Graham C.
        • Franguylan R.
        • Rossi A.G.
        • Hill A.T.
        Feasibility of shortening intravenous antibiotic therapy for bronchiectasis based on bacterial load: a proof-of-concept randomised controlled trial.
        Eur. Respir. J. 2021 Dec; 582004388https://doi.org/10.1183/13993003.04388-2020
        • Goss C.H.
        • Heltshe S.L.
        • West N.E.
        • Skalland M.
        • Sanders D.B.
        • Jain R.
        • Barto T.L.
        • Fogarty B.
        • Marshall B.C.
        • VanDevanter D.R.
        • Flume P.A.
        STOP2 Investigators, A randomized clinical trial of antimicrobial duration for cystic fibrosis pulmonary exacerbation treatment.
        Am. J. Respir. Crit. Care Med. 2021 Dec; 204: 1295-1305https://doi.org/10.1164/rccm.202102-0461OC
        • Kelly C.
        • Chalmers J.D.
        • Crossingham I.
        • Relph N.
        • Felix L.M.
        • Evans D.J.
        • Milan S.J.
        • Spencer S.
        Macrolide antibiotics for bronchiectasis.
        Cochrane Database Syst. Rev. 2018 Mar; 3: CD012406https://doi.org/10.1002/14651858.CD012406.pub2
        • Wang D.
        • Fu W.
        • Dai J.
        Meta-analysis of macrolide maintenance therapy for prevention of disease exacerbations in patients with noncystic fibrosis bronchiectasis.
        Medicine. 2019 Apr; 98e15285https://doi.org/10.1097/MD.0000000000015285
        • Janjua S.
        • Mathioudakis A.G.
        • Fortescue R.
        • Walker R.A.
        • Sharif S.
        • Threapleton C.J.
        • Dias S.
        Prophylactic antibiotics for adults with chronic obstructive pulmonary disease: a network meta-analysis.
        Cochrane Database Syst. Rev. 2021 Jan; 1: CD013198https://doi.org/10.1002/14651858.CD013198.pub2
        • Aksamit T.R.
        • Philley J.V.
        • Griffith D.E.
        Nontuberculous mycobacterial (NTM) lung disease: the top ten essentials.
        Respir. Med. 2014 Mar; 108: 417-425https://doi.org/10.1016/j.rmed.2013.09.014
        • Tabernero Huguet E.
        • Gil Alaña P.
        • Alkiza Basañez R.
        • Hernández Gil A.
        • Garros Garay J.
        • Artola Igarza J.L.
        Inhaled colistin in elderly patients with non-cystic fibrosis bronchiectasis and chronic Pseudomonas aeruginosa bronchial infection [in Spanish].
        Rev. Esp. Geriatr. Gerontol. 2015 May-Jun; 50: 111-115https://doi.org/10.1016/j.regg.2014.09.005
        • Barker A.F.
        • O'Donnell A.E.
        • Flume P.
        • Thompson P.J.
        • Ruzi J.D.
        • de Gracia J.
        • Boersma W.G.
        • De Soyza A.
        • Shao L.
        • Zhang J.
        • Haas L.
        • Lewis S.A.
        • Leitzinger S.
        • Montgomery A.B.
        • McKevitt M.T.
        • Gossage D.
        • Quittner A.L.
        • O'Riordan T.G.
        Aztreonam for inhalation solution in patients with non-cystic fibrosis bronchiectasis (AIR-BX1 and AIR-BX2): two randomised double-blind, placebo-controlled phase 3 trials.
        Lancet Respir. Med. 2014 Sep; 2: 738-749https://doi.org/10.1016/S2213-2600(14)70165-1
        • De Soyza A.
        • Aksamit T.
        • Bandel T.J.
        • Criollo M.
        • Elborn J.S.
        • Operschall E.
        • Polverino E.
        • Roth K.
        • Winthrop K.L.
        • Wilson R.
        RESPIRE 1: a phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis.
        Eur. Respir. J. 2018 Jan; 511702052https://doi.org/10.1183/13993003.02052-2017
        • Haworth C.S.
        • Bilton D.
        • Chalmers J.D.
        • Davis A.M.
        • Froehlich J.
        • Gonda I.
        • Thompson B.
        • Wanner A.
        • O'Donnell A.E.
        Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis bronchiectasis and chronic lung infection with Pseudomonas aeruginosa (ORBIT-3 and ORBIT-4): two phase 3, randomised controlled trials.
        Lancet Respir. Med. 2019 Mar; 7: 213-226https://doi.org/10.1016/S2213-2600(18)30427-2
        • Serisier D.J.
        • Bilton D.
        • De Soyza A.
        • Thompson P.J.
        • Kolbe J.
        • Greville H.W.
        • Cipolla D.
        • Bruinenberg P.
        • Gonda I.
        ORBIT-2 investigators, Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): a randomised, double-blind, placebo-controlled trial.
        Thorax. 2013 Sep; 68: 812-817https://doi.org/10.1136/thoraxjnl-2013-203207
        • Aksamit T.
        • De Soyza A.
        • Bandel T.J.
        • Criollo M.
        • Elborn J.S.
        • Operschall E.
        • Polverino E.
        • Roth K.
        • Winthrop K.L.
        • Wilson R.
        RESPIRE 2: a phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis.
        Eur. Respir. J. 2018 Jan; 511702053https://doi.org/10.1183/13993003.02053-2017
        • Haworth C.S.
        • Foweraker J.E.
        • Wilkinson P.
        • Kenyon R.F.
        • Bilton D.
        Inhaled colistin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection.
        Am. J. Respir. Crit. Care Med. 2014 Apr; 189: 975-982https://doi.org/10.1164/rccm.201312-2208OC
        • Murray M.P.
        • Govan J.R.
        • Doherty C.J.
        • Simpson A.J.
        • Wilkinson T.S.
        • Chalmers J.D.
        • Greening A.P.
        • Haslett C.
        • Hill A.T.
        A randomized controlled trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis.
        Am. J. Respir. Crit. Care Med. 2011 Feb; 183: 491-499https://doi.org/10.1164/rccm.201005-0756OC
        • Crichton M.L.
        • Lonergan M.
        • Barker A.F.
        • Sibila O.
        • Goeminne P.
        • Shoemark A.
        • Chalmers J.D.
        Inhaled aztreonam improves symptoms of cough and sputum production in patients with bronchiectasis: a post hoc analysis of the AIR-BX studies.
        Eur. Respir. J. 2020 Jul; 562000608https://doi.org/10.1183/13993003.00608-2020
        • VanDevanter D.R.
        • Gonda I.
        • Dahms J.
        • Cipolla D.
        • Davis A.M.
        • Chalmers J.D.
        • Froehlich J.
        Microbiological changes observed over 48 weeks of treatment with inhaled liposomal ciprofloxacin in individuals with non-cystic fibrosis bronchiectasis and chronic Pseudomonas aeruginosa lung infection.
        Clin. Microbiol. Infect. 2019 Dec; 25: 1532-1538https://doi.org/10.1016/j.cmi.2019.04.017
        • Nadig T.R.
        • Flume P.A.
        Aerosolized antibiotics for patients with bronchiectasis.
        Am. J. Respir. Crit. Care Med. 2016 Apr; 193: 808-810https://doi.org/10.1164/rccm.201507-1449LE
        • Henkle E.
        • Daley D.L.
        • Curtis J.R.
        • Chan B.
        • Aksamit T.R.
        • Winthrop K.L.
        Comparative safety of inhaled corticosteroids and macrolides in Medicare enrolees with bronchiectasis.
        ERJ Open Res. 2022 Mar; 8 (00786): 2020https://doi.org/10.1183/23120541.00786-2020
        • Spencer S.
        • Felix L.M.
        • Milan S.J.
        • Normansell R.
        • Goeminne P.C.
        • Chalmers J.D.
        • Donovan T.
        Oral versus inhaled antibiotics for bronchiectasis.
        Cochrane Database Syst. Rev. 2018 Mar; 3: CD012579https://doi.org/10.1002/14651858.CD012579.pub2
        • Kaehne A.
        • Milan S.J.
        • Felix L.M.
        • Sheridan E.
        • Marsden P.A.
        • Spencer S.
        Head-to-head trials of antibiotics for bronchiectasis.
        Cochrane Database Syst. Rev. 2018 Sep; 9: CD012590https://doi.org/10.1002/14651858.CD012590.pub2
        • Byrne M.K.
        • Miellet S.
        • McGlinn A.
        • Fish J.
        • Meedya S.
        • Reynolds N.
        • van Oijen A.M.
        The drivers of antibiotic use and misuse: the development and investigation of a theory driven community measure.
        BMC Publ. Health. 2019 Oct; 19: 1425https://doi.org/10.1186/s12889-019-7796-8
        • Keating C.L.
        • Zuckerman J.B.
        • Singh P.K.
        • McKevitt M.
        • Gurtovaya O.
        • Bresnik M.
        • Marshall B.C.
        • Saiman L.
        Pseudomonas aeruginosa susceptibility patterns and associated clinical outcomes in people with cystic fibrosis following approval of aztreonam lysine for inhalation.
        Antimicrob. Agents Chemother. 2021 Feb; 65 (e02327-20)https://doi.org/10.1128/aac.02327-20
        • Jospe-Kaufman M.
        • Siomin L.
        • Fridman M.
        The relationship between the structure and toxicity of aminoglycoside antibiotics.
        Bioorg. Med. Chem. Lett. 2020 Jul; 30127218https://doi.org/10.1016/j.bmcl.2020.127218
        • Maselli D.J.
        • Keyt H.
        • Restrepo M.I.
        Inhaled antibiotic therapy in chronic respiratory diseases.
        Int. J. Mol. Sci. 2017 May; 18: 1062https://doi.org/10.3390/ijms18051062
        • Gao P.
        • Nie X.
        • Zou M.
        • Shi Y.
        • Cheng G.
        Recent advances in materials for extended-release antibiotic delivery system.
        J. Antibiot. 2011 Sep; 64: 625-634https://doi.org/10.1038/ja.2011.58
        • Chalmers J.D.
        • Moffitt K.L.
        • Suarez-Cuartin G.
        • Sibila O.
        • Finch S.
        • Furrie E.
        • Dicker A.
        • Wrobel K.
        • Elborn J.S.
        • Walker B.
        • Martin S.L.
        • Marshall S.E.
        • Huang J.T.
        • Fardon T.C.
        Neutrophil elastase activity is associated with exacerbations and lung function decline in bronchiectasis.
        Am. J. Respir. Crit. Care Med. 2017 May; 195: 1384-1393https://doi.org/10.1164/rccm.201605-1027OC
        • Andrejak C.
        • Nielsen R.
        • Thomsen V.O.
        • Duhaut P.
        • Sorensen H.T.
        • Thomsen R.W.
        Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis.
        Thorax. 2013 Mar; 68: 256-262https://doi.org/10.1136/thoraxjnl-2012-201772
        • Hojo M.
        • Iikura M.
        • Hirano S.
        • Sugiyama H.
        • Kobayashi N.
        • Kudo K.
        Increased risk of nontuberculous mycobacterial infection in asthmatic patients using long-term inhaled corticosteroid therapy.
        Respirology. 2012 Jan; 17: 185-190https://doi.org/10.1111/j.1440-1843.2011.02076.x
        • Dirac M.A.
        • Horan K.L.
        • Doody D.R.
        • Meschke J.S.
        • Park D.R.
        • Jackson L.A.
        • Weiss N.S.
        • Winthrop K.L.
        • Cangelosi G.A.
        Environment or host?: a case-control study of risk factors for Mycobacterium avium complex lung disease.
        Am. J. Respir. Crit. Care Med. 2012 Oct; 186: 684-691https://doi.org/10.1164/rccm.201205-0825OC
        • Henkle E.
        • Aksamit T.R.
        • Barker A.F.
        • Curtis J.R.
        • Daley C.L.
        • Anne Daniels M.L.
        • DiMango A.
        • Eden E.
        • Fennelly K.
        • Griffith D.E.
        • Johnson M.
        • Knowles M.R.
        • Leitman A.
        • Leitman P.
        • Malanga E.
        • Metersky M.L.
        • Noone P.G.
        • O'Donnell A.E.
        • Olivier K.N.
        • Prieto D.
        • Salathe M.
        • Thomashow B.
        • Tino G.
        • Turino G.
        • Wisclenny S.
        • Winthrop K.L.
        Pharmacotherapy for non-cystic fibrosis bronchiectasis. Results from an NTM info & research patient survey and the bronchiectasis and NTM research Registry.
        Chest. 2017 Dec; 152: 1120-1127https://doi.org/10.1016/j.chest.2017.04.167
        • Shoemark A.
        • Shteinberg M.
        • De Soyza A.
        • Haworth C.S.
        • Richardson H.
        • Gao Y.
        • Perea L.
        • Dicker A.J.
        • Goeminne P.C.
        • Cant E.
        • Polverino E.
        • Altenburg J.
        • Keir H.R.
        • Loebinger M.R.
        • Blasi F.
        • Welte T.
        • Sibila O.
        • Aliberti S.
        • Chalmers J.D.
        Characterization of eosinophilic bronchiectasis: a european multicohort study.
        Am. J. Respir. Crit. Care Med. 2022 Apr; 205: 894-902https://doi.org/10.1164/rccm.202108-1889OC
        • Altenburg J.
        • de Graaff C.S.
        • Stienstra Y.
        • Sloos J.H.
        • van Haren E.H.
        • Koppers R.J.
        • van der Werf T.S.
        • Boersma W.G.
        Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial.
        JAMA. 2013 Mar; 309: 1251-1259https://doi.org/10.1001/jama.2013.1937
        • Rogers G.B.
        • Bruce K.D.
        • Martin M.L.
        • Burr L.D.
        • Serisier D.J.
        The effect of long-term macrolide treatment on respiratory microbiota composition in non-cystic fibrosis bronchiectasis: an analysis from the randomised, double-blind, placebo-controlled BLESS trial.
        Lancet Respir. Med. 2014 Dec; 2: 988-996https://doi.org/10.1016/s2213-2600(14)70213-9
        • Serisier D.J.
        • Martin M.L.
        • McGuckin M.A.
        • Lourie R.
        • Chen A.C.
        • Brain B.
        • Biga S.
        • Schlebusch S.
        • Dash P.
        • Bowler S.D.
        Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: the BLESS randomized controlled trial.
        JAMA. 2013 Mar; 309: 1260-1267https://doi.org/10.1001/jama.2013.2290
        • Metersky M.L.
        • Choate R.
        The association of long-term macrolide therapy and nontuberculous mycobacterial culture positivity in patients with bronchiectasis.
        Chest. 2021 Aug; 160: 466-469https://doi.org/10.1016/j.chest.2021.02.019
        • Chalmers J.D.
        • Haworth C.S.
        • Metersky M.L.
        • Loebinger M.R.
        • Blasi F.
        • Sibila O.
        • O'Donnell A.E.
        • Sullivan E.J.
        • Mange K.C.
        • Fernandez C.
        • Zou J.
        • Daley C.L.
        • WILLOW Investigators
        Phase 2 trial of the DPP-1 inhibitor brensocatib in bronchiectasis.
        N. Engl. J. Med. 2020 Nov; 383: 2127-2137https://doi.org/10.1056/NEJMoa2021713
        • Metersky M.
        • Chalmers J.
        Bronchiectasis insanity: Doing the same thing over and over again and expecting different results?.
        F1000 Faculty Rev. 2019 Mar; (F1000Res 8): 293https://doi.org/10.12688/f1000research.17295.1
        • Sibila O.
        • Laserna E.
        • Shoemark A.
        • Bilton D.
        • Crichton M.L.
        • De Soyza A.
        • Boersma W.G.
        • Altenburg J.
        • Chalmers J.D.
        Heterogeneity of treatment response in bronchiectasis clinical trials.
        Eur. Respir. J. 2020; 56: 3332https://doi.org/10.1183/13993003.congress-2020.3332
        • McDonald V.M.
        • Fingleton J.
        • Agusti A.
        • Hiles S.A.
        • Clark V.L.
        • Holland A.E.
        • Marks G.B.
        • Bardin P.P.
        • Beasley R.
        • Pavord I.D.
        • Wark P.A.B.
        • Gibson P.G.
        Treatable traits down under international workshop participants, treatable traits: a new paradigm for 21st century management of chronic airway diseases: treatable traits down under international workshop report.
        Eur. Respir. J. 2019 May; 531802058https://doi.org/10.1183/13993003.02058-2018